Post-Processing Partitions to Identify Domains of Modularity Optimization
<p>(<b>A</b>) Modularity <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>γ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> given by Equation (<a href="#FD1-algorithms-10-00093" class="html-disp-formula">1</a>) versus resolution parameter <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> for <math display="inline"> <semantics> <mrow> <mn>50</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics> </math> runs (<math display="inline"> <semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics> </math> of results displayed here) of the Louvain algorithm [<a href="#B42-algorithms-10-00093" class="html-bibr">42</a>,<a href="#B47-algorithms-10-00093" class="html-bibr">47</a>] at different <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> on the unweighted NCAA Division I-A (2000) college football network [<a href="#B37-algorithms-10-00093" class="html-bibr">37</a>,<a href="#B38-algorithms-10-00093" class="html-bibr">38</a>]. Grey triangles indicate the number of communities that include <math display="inline"> <semantics> <mrow> <mo>≥</mo> <mn>5</mn> </mrow> </semantics> </math> nodes in each run, while the green step function shows the number in the optimal partition in each domain; (<b>B</b>) Graphical depiction of CHAMP algorithm (see <a href="#sec2-algorithms-10-00093" class="html-sec">Section 2</a>). Each line indicates <math display="inline"> <semantics> <mrow> <msub> <mi>Q</mi> <mi>σ</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>γ</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> given by Equation (<a href="#FD2-algorithms-10-00093" class="html-disp-formula">2</a>) for a particular partition <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math>. Both panels show the convex hull of these lines as the dashed green piecewise-linear curve, with the transition values represented by downward triangles.</p> "> Figure 2
<p>(<b>A</b>) ForceAtlas2 [<a href="#B52-algorithms-10-00093" class="html-bibr">52</a>] layout, created with [<a href="#B53-algorithms-10-00093" class="html-bibr">53</a>], of the unweighted NCAA Division I-A (2000) college football network. Nodes are colored according to the dominant 12-community partition with the widest <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math>-domain <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo>∈</mo> <mo>[</mo> <mn>1.45</mn> <mo>,</mo> <mn>3.89</mn> <mo>]</mo> </mrow> </semantics> </math>, with node shapes and border indicating their conference labels; (<b>B</b>) Pairwise adjusted mutual information (N = AMI) between all partitions in the admissible subset identified by CHAMP, arranged by their corresponding <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math>-domains of optimality. Dashed lines indicate the transition values of <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> identified by CHAMP.</p> "> Figure 3
<p>(<b>A</b>) Modularity <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>γ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> given by Equation (<a href="#FD1-algorithms-10-00093" class="html-disp-formula">1</a>) v. resolution parameter <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> for <math display="inline"> <semantics> <mrow> <mn>20</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics> </math> runs (<math display="inline"> <semantics> <mrow> <mn>25</mn> <mo>%</mo> </mrow> </semantics> </math> of results shown) of Louvain [<a href="#B42-algorithms-10-00093" class="html-bibr">42</a>,<a href="#B47-algorithms-10-00093" class="html-bibr">47</a>] on the Human Protein Reactome network [<a href="#B54-algorithms-10-00093" class="html-bibr">54</a>]. Small, grey triangles indicate the number of communities that include <math display="inline"> <semantics> <mrow> <mo>≥</mo> <mn>5</mn> </mrow> </semantics> </math> nodes in each run, while the dark green step function shows the number in the optimal partition in each domain. The dashed green curve is the piecewise-linear modularity function for the optimal partitions, with the transition values marked by blue triangles; (<b>B</b>) Pairwise AMI between all partitions in the admissible subset identified by CHAMP, arranged by their corresponding <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math>-domains of optimality.</p> "> Figure 4
<p>ForceAtlas2 layout [<a href="#B52-algorithms-10-00093" class="html-bibr">52</a>], created with [<a href="#B53-algorithms-10-00093" class="html-bibr">53</a>], of the Human Reactome Network (edges downsampled to 50,000), colored according to the partitions with the two widest <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math>-domains of optimization identified by CHAMP from <math display="inline"> <semantics> <mrow> <mn>20</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics> </math> runs of Louvain.</p> "> Figure 5
<p>(<b>A</b>) Modularity <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>γ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> v. <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> for <math display="inline"> <semantics> <mrow> <mn>100</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics> </math> runs (<math display="inline"> <semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics> </math> of results shown) of Louvain [<a href="#B42-algorithms-10-00093" class="html-bibr">42</a>,<a href="#B47-algorithms-10-00093" class="html-bibr">47</a>] on the Caltech Facebook network [<a href="#B31-algorithms-10-00093" class="html-bibr">31</a>]. Orange triangles indicate the number of communities that include <math display="inline"> <semantics> <mrow> <mo>≥</mo> <mn>5</mn> </mrow> </semantics> </math> nodes in each run, while the red step function shows the number in the optimal partition in each domain. The dashed green curve is the piecewise-linear modularity function for the optimal partitions, with the transition values marked by blue triangles. The condensed layout of communities (created with [<a href="#B53-algorithms-10-00093" class="html-bibr">53</a>]) here visualizes the optimal partition found for <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo>∈</mo> <mo>[</mo> <mn>0.908</mn> <mo>,</mo> <mn>1.09</mn> <mo>]</mo> </mrow> </semantics> </math>, with each pie-chart corresponding to a community, fractionally colored according to the House membership of the nodes in the community. The AMI between this partition and House labels (including the missing label) is 0.513; (<b>B</b>) Pairwise AMI between all partitions in the admissible subset identified by CHAMP, arranged by their corresponding <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math>-domains of optimality.</p> "> Figure 6
<p>(<b>A</b>) Domains of optimization for the pruned set of partitions, colored by the number of communities within each partition. The set of partitions was generated from <math display="inline"> <semantics> <mrow> <mn>240</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics> </math> runs of GenLouvain [<a href="#B41-algorithms-10-00093" class="html-bibr">41</a>] on a <math display="inline"> <semantics> <mrow> <mn>600</mn> <mo>×</mo> <mn>400</mn> </mrow> </semantics> </math> uniform grid over <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo> </mrow> </semantics> </math> in <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>γ</mi> <mo>,</mo> <mi>ω</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>. The largest partitions are labeled “<math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>.</mo> <mi>Y</mi> </mrow> </semantics> </math>” with <span class="html-italic">X</span> the number of communities with ≥ 5 nodes and <span class="html-italic">Y</span> the rank of the domain area (that is, in terms of size) for that given number of communities (e.g., “5.2” is the second-largest domain corresponding to 5-community partitions). The partitions of each labeled domain are visualized in <a href="#app1-algorithms-10-00093" class="html-app">Appendix A</a>; (<b>B</b>) Weighted-average AMI of each partition with its neighboring domains’ partitions, weighted by the length of the borders between neighboring domains.</p> "> Figure 7
<p>Time-varying community structure for the U.S. Senate from 1789 to 2008 according to the (<b>A</b>,<b>B</b>) 5-community and (<b>C</b>,<b>D</b>) 8-community partitions with widest domains of optimality (see labels <math display="inline"> <semantics> <mrow> <mn>5.1</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mn>8.1</mn> </mrow> </semantics> </math> in <a href="#algorithms-10-00093-f006" class="html-fig">Figure 6</a>A); (<b>A</b>,<b>C</b>) The vertical axis indicates individual Senators, sorted by community label and time. The AMI reported here is the average over layers (Congresses) of the AMIs in each layer between the identified communities in that layer and political party labels. (This layer-averaged AMI is shown for all partitions in the convex hull over the originally searched parameter range in <a href="#algorithms-10-00093-f008" class="html-fig">Figure 8</a>.) (<b>B</b>,<b>D</b>) The vertical axis indicates the state of a Senator, sorted according to geographic region, and the horizontal axis represents time (two-year Congresses).</p> "> Figure 8
<p>The domains of optimality for the time-varying U.S. Senate roll-call similarity network (as in <a href="#algorithms-10-00093-f006" class="html-fig">Figure 6</a>), colored by the layer-averaged AMI between the political-party affiliations of Senators and the community labels <math display="inline"> <semantics> <mrow> <mo>{</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>σ</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics> </math> for that layer.</p> "> Figure 9
<p>Visualizations of partitions labeled in white in <a href="#algorithms-10-00093-f006" class="html-fig">Figure 6</a>A, with Senators grouped according to their state. The listed AMI is the average over layers of the AMI in each layer (Congress) between the communities and political party affiliations for that Congress. Partitions are labeled “<math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>.</mo> <mi>Y</mi> </mrow> </semantics> </math>” with <span class="html-italic">X</span> the number of communities with ≥ 5 nodes and <span class="html-italic">Y</span> the rank of the domain area for that number of communities.</p> "> Figure 10
<p>Visualizations of partitions labeled in white in <a href="#algorithms-10-00093-f006" class="html-fig">Figure 6</a>A, with Senators sorted by their most frequent community label (with the labels sorted by last appearance in time), and within communities by first appearance. The listed AMI is the average over layers of the AMI in each layer (Congress) between the communities and political party affiliations in that Congress.</p> ">
Abstract
:1. Introduction
2. The CHAMP Algorithm (Convex Hull of Admissible Modularity Partitions)
2.1. MultiLayer Networks and Qhull
3. Results
3.1. NCAA Division I-A College Football Network
3.2. Human Protein Reactome Network
3.3. Caltech Facebook Network
3.4. U.S. Senate Roll Call Voting Network
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Additional Figures
References
- Porter, M.A.; Onnela, J.P.; Mucha, P.J. Communities in networks. Not. AMS 2009, 56, 1082–1097, 1164–1166. [Google Scholar]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef]
- Abbe, E. Community detection and stochastic block models: Recent developments. arXiv, 2017; arXiv:1703.10146. [Google Scholar]
- Schaub, M.T.; Delvenne, J.C.; Rosvall, M.; Lambiotte, R. The many facets of community detection in complex networks. Appl. Netw. Sci. 2017, 2. [Google Scholar] [CrossRef]
- Shai, S.; Stanley, N.; Granell, C.; Taylor, D.; Mucha, P.J. Case studies in network community detection. arXiv, 2017; arXiv:1705.02305. [Google Scholar]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, J.; Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 2006, 74, 016110. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, S.; Barthélemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 2007, 104, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Arenas, A.; Fernández, A.; Gómez, S. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 2008, 10, 053039. [Google Scholar] [CrossRef]
- Granell, C.; Gómez, S.; Arenas, A. Mesoscopic analysis of networks: Applications to exploratory analysis and data clustering. Chaos 2011, 21, 016102. [Google Scholar] [CrossRef] [PubMed]
- Leicht, E.A.; Newman, M.E.J. Community Structure in Directed Networks. Phys. Rev. Lett. 2008, 100, 118703. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.J. Modularity and community detection in bipartite networks. Phys. Rev. E 2007, 76, 066102. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.; Jensen, P.; Arenas, A. Analysis of community structure in networks of correlated data. Phys. Rev. E 2009, 80, 016114. [Google Scholar] [CrossRef] [PubMed]
- Traag, V.A.; Bruggeman, J. Community detection in networks with positive and negative links. Phys. Rev. E 2009, 80, 036115. [Google Scholar] [CrossRef] [PubMed]
- Mucha, P.J.; Richardson, T.; Macon, K.; Porter, M.A. Community structure in time-dependent, multiscale, and multiplex networks. Science 2010, 328, 876. [Google Scholar] [CrossRef] [PubMed]
- Brandes, U.; Delling, D.; Gaertler, M.; Goerke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. On modularity clustering. IEEE Trans. Knowl. Data Eng. 2008, 20, 172–188. [Google Scholar] [CrossRef]
- Good, B.H.; de Montjoye, Y.A.; Clauset, A. Performance of modularity maximization in practical contexts. Phys. Rev. E 2010, 81, 046106. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef]
- De Domenico, M.; Lancichinetti, A.; Arenas, A.; Rosvall, M. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems. Phys. Rev. X 2015, 5, 011027. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Xu, K.S.; Airoldi, E.M. Consistent Estimation of Dynamic and Multi-layer Block Models. In Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, 6–11 July 2015; pp. 1511–1520. [Google Scholar]
- Stanley, N.; Shai, S.; Taylor, D.; Mucha, P.J. Clustering Network Layers with the Strata Multilayer Stochastic Block Model. IEEE Trans. Netw. Sci. Eng. 2016, 3, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Shai, S.; Stanley, N.; Mucha, P.J. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation. Phys. Rev. Lett. 2016, 116, 228301. [Google Scholar] [CrossRef] [PubMed]
- Detecting communities (Pajek and PajekXXL). Available online: http://mrvar.fdv.uni-lj.si/pajek/community/CommunityDrawExample.htm (accessed on 16 August 2017).
- Fenn, D.J.; Porter, M.A.; McDonald, M.; Williams, S.; Johnson, N.F.; Jones, N.S. Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007–2008 credit crisis. Chaos 2009, 19, 033119. [Google Scholar] [CrossRef] [PubMed]
- Fenn, D.J.; Porter, M.A.; Mucha, P.J.; McDonald, M.; Williams, S.; Johnson, N.F.; Jones, N.S. Dynamical clustering of exchange rates. Quant. Finance 2012, 12, 1493–1520. [Google Scholar] [CrossRef]
- Macon, K.T.; Mucha, P.J.; Porter, M.A. Community structure in the United Nations General Assembly. Phys. A 2012, 391, 343–361. [Google Scholar] [CrossRef]
- Traag, V.A.; Krings, G.; van Dooren, P. Significant Scales in Community Structure. Sci. Rep. 2013, 3, 2930. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.C.; Jones, N.S.; Porter, M.A.; Deane, C.M. The function of communities in protein interaction networks at multiple scales. BMC Syst. Biol. 2010, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traud, A.L.; Kelsic, E.D.; Mucha, P.J.; Porter, M.A. Comparing Community Structure to Characteristics in Online Collegiate Social Networks. SIAM Rev. 2011, 53, 526–543. [Google Scholar] [CrossRef]
- Meilǎ, M. Comparing clusterings—An information based distance. J. Multivar. Anal. 2007, 98, 873–895. [Google Scholar] [CrossRef]
- Fred, A.L.N.; Jain, A.K. Robust data clustering. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 2, pp. II–128. [Google Scholar]
- Bassett, D.S.; Porter, M.A.; Wymbs, N.F.; Grafton, S.T.; Carlson, J.M.; Mucha, P.J. Robust detection of dynamic community structure in networks. Chaos 2013, 23, 013142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovelgönne, M.; Geyer-Schulz, A. An ensemble learning strategy for graph clustering. Contemp. Math. 2012, 588, 187–206. [Google Scholar]
- Lancichinetti, A.; Fortunato, S. Consensus clustering in complex networks. Sci. Rep. 2012, 2, 336. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.S. Clique graphs and overlapping communities. J. Stat. Mech. Theory Exp. 2010, 2010. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed]
- De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A. Mathematical Formulation of Multilayer Networks. Phys. Rev. X 2013, 3, 041022. [Google Scholar] [CrossRef]
- Bazzi, M.; Porter, M.A.; Williams, S.; McDonald, M.; Fenn, D.J.; Howison, S.D. Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks. Multiscale Modeling Simul. 2016, 14, 1–41. [Google Scholar] [CrossRef]
- Jeub, L.G.S.; Bazzi, M.; Jutla, I.S.; Mucha, P.J. A generalized Louvain method for community detection implemented in MATLAB. 2011–2016. Available online: http://netwiki.amath.unc.edu/GenLouvain (accessed on 16 August 2017).
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, 155–168. [Google Scholar] [CrossRef]
- Qhull. Available online: http://www.qhull.org/ (accessed on 16 August 2017).
- Pyhull. Available online: http://pythonhosted.org/pyhull/ (accessed on 16 August 2017).
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The Quickhull Algorithm for Convex Hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef]
- Weir, W.; Gibson, R.; Mucha, P.J. CHAMP package: Convex Hull of Admissible Modularity Partitions in Python and MATLAB. 2017. Available online: https://github.com/wweir827/CHAMP (accessed on 16 August 2017).
- Traag, V. Louvain igraph. Available online: http://github.com/vtraag/louvain-igraph (accessed on 16 August 2017).
- Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings Comparison: Is a Correction for Chance Necessary? In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 1073–1080. [Google Scholar]
- Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
- Meilă, M. Comparing Clusterings by the Variation of Information. In Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Learning Theory and Kernel Machine, Washington, DC, USA, 24–27 August 2003; Schölkopf, B., Warmuth, M.K., Eds.; Springer: Berlin/Heidelberg, Gernany, 2003; pp. 173–187. [Google Scholar]
- Rijsbergen, C.J.V. Information Retrieval, 2nd ed.; Butterworth-Heinemann: Newton, MA, USA, 1979. [Google Scholar]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, T.P. The graph-tool python library. 2014. Available online: http://figshare.com/articles/graph_tool/1164194 (accessed on 16 August 2017).
- Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D’Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal, B.; Gopinath, G.R.; Wu, G.R.; Matthews, L.; et al. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res. 2005, 33, D428–D432. [Google Scholar] [CrossRef] [PubMed]
- Kunegis, J. KONECT: The Koblenz Network Collection; The Koblenz Network Collection; ACM: New York, NY, USA, 2013. [Google Scholar]
- Waugh, A.S.; Pei, L.; Fowler, J.H.; Mucha, P.J.; Porter, M.A. Party Polarization in Congress: A Network Science Approach. arXiv, 2009; arXiv:0907.3509. [Google Scholar]
- Mucha, P.J.; Porter, M.A. Communities in multislice voting networks. Chaos 2010, 20, 041108. [Google Scholar] [CrossRef] [PubMed]
- De Montgolfier, F.; Soto, M.; Viennot, L. Asymptotic modularity of some graph classes. Int. Symp. Algorithms Comput. 2011, 7074, 435–444. [Google Scholar]
- Bagrow, J.P. Communities and bottlenecks: Trees and treelike networks have high modularity. Phys. Rev. E 2012, 85, 066118. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weir, W.H.; Emmons, S.; Gibson, R.; Taylor, D.; Mucha, P.J. Post-Processing Partitions to Identify Domains of Modularity Optimization. Algorithms 2017, 10, 93. https://doi.org/10.3390/a10030093
Weir WH, Emmons S, Gibson R, Taylor D, Mucha PJ. Post-Processing Partitions to Identify Domains of Modularity Optimization. Algorithms. 2017; 10(3):93. https://doi.org/10.3390/a10030093
Chicago/Turabian StyleWeir, William H., Scott Emmons, Ryan Gibson, Dane Taylor, and Peter J. Mucha. 2017. "Post-Processing Partitions to Identify Domains of Modularity Optimization" Algorithms 10, no. 3: 93. https://doi.org/10.3390/a10030093