Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects
<p>Schematic of the typical TM-AFM setup.</p> ">
<p>Schematic of the lumped spring-mass-damping model for the TM-AFM cantilever vibrating near a sample surface.</p> ">
<p>Bifurcation diagram of the amplitude of the external forcing term Γ.</p> ">
<p>Largest Lyapunov exponent map of the amplitude of the external forcing term Γ.</p> ">
<p>The Poincaré maps, phase portraits, amplitude spectrums and time histories of different Γ.</p> ">
<p>The relationship between the vacuum resonant frequency <span class="html-italic">ω<sub>vac</sub></span> and the resonant frequency in gas <span class="html-italic">ω<sub>gas</sub></span> (<span class="html-italic">ω<sub>gas</sub>/ω<sub>vac</sub></span>) as a function of the Reynolds number <span class="html-italic">R<sub>e</sub></span> at different natural scaling parameter ∏.</p> ">
<p>The quality factor <span class="html-italic">Q<sub>gas</sub></span> as a function of the Reynolds number <span class="html-italic">R<sub>e</sub></span> for the fundamental mode at different natural scaling parameter ∏.</p> ">
<p>Pressure distributions of the cantilever at the resonant frequency.</p> ">
<p>Bifurcation diagram of the squeeze film damping ratio <span class="html-italic">η</span>.</p> ">
Abstract
:1. Introduction
2. Micro-Cantilever Vibrating in Air
2.1. Hydrodynamic Loading Effect
2.2. Squeeze Film Damping Effect
3. The Physical Model
4. Results and Discussion
4.1. Effect of External Forcing Term Γ
4.2. Effect of Squeeze Film Damping η
4.3. Effect of material property parameter Σ
4.4. Effect of Equilibrium Parameter α
5. Conclusions
Acknowledgments
References
- Finot, E.; Passian, A.; Thundat, T. Measurement of mechanical properties of cantilever shaped materials. Sensors 2008, 8, 3497–3541. [Google Scholar]
- Jalili, N.; Laxminarayana, K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 2004, 14, 907–945. [Google Scholar]
- Hersam, M.C. Monitoring and analyzing nonlinear dynamics in atomic force microscopy. Small 2006, 2, 1122–1124. [Google Scholar]
- Wei, Z; Zhao, Y.P. Growth of liquid bridge in AFM. J. Phys. D: Appl. Phys. 2008, 40, 4368–4375. [Google Scholar]
- Yacoot, A.; Koenders, L. Aspects of scanning force microscope probes and their effects on dimensional measurement. J. Phys. D: Appl. Phys. 2008, 41, 103001. [Google Scholar]
- Lee, S.I.; Howell, S.W.; Raman, A.; Reifenberger, R. Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys. Rev. B 2002, 66, 115409. [Google Scholar]
- Zhao, X.; Dankowicz, H. Characterization of intermittent contact in tapping-mode atomic force microscopy. ASME J. Comput. Nonlin. Dyn. 2006, 1, 109–115. [Google Scholar]
- Yagasaki, K. Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force microscopy. Phys. Rev. B 2004, 70, 245419. [Google Scholar]
- Rutzel, S.; Lee, S.I.; Raman, A. Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proc. R. Soc. Lond. A 2003, 459, 1925–1948. [Google Scholar]
- Hashemi, N.; Dankowicz, H.; Paul, M.R. The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions. J. Appl. Phys. 2008, 103, 093512. [Google Scholar]
- Ashhab, M.; Salapaka, M.V.; Dahleh, M.; Mezic, I. Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlin. Dyn. 1999, 20, 197–220. [Google Scholar]
- Basso, M.; Giarre, L.; Dahleh, M.; Mezic, I. Complex dynamics in a harmonically excited Lennard-Jones oscillator: microcantilever–sample interaction in scanning probe microscopes. J. Dyn. Syst. Meas. Control 2000, 122, 240–245. [Google Scholar]
- Paulo, A.S.; Garcia, R. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys. Rev. B 2001, 64, 193411. [Google Scholar]
- Behrend, O.P.; Odoni, L.; Loubet, J.L.; Burnham, N.A. Phase imaging: Deep or superficial? Appl. Phys. Lett. 1999, 75, 2551. [Google Scholar]
- Zitzler, L.; Herminghaus, S.; Mugele, F. Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 2002, 66, 155436. [Google Scholar]
- Couturier, G.; Boisgard, R.; Nony, L.; Aime, J.P. Noncontacta tomic force microscopy: Stability criterion and dynamical responses of the shift of frequency and damping signal. Rev. Sci. Instr. 2003, 74, 2726–2734. [Google Scholar]
- Zhang, W.M.; Meng, G. Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS. Sens. Actuat. A: Phys. 2005, 119, 291–299. [Google Scholar]
- Zhang, W.M.; Meng, G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens. J. 2007, 7, 370–380. [Google Scholar]
- Motamedi, R.; Wood-Adams, P.M. Influence of fluid cell design on the frequency response of AFM microcantilevers in liquid media. Sensors 2008, 8, 5927–5941. [Google Scholar]
- Basak, S.; Raman, A. Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J. Appl. Phys. 2006, 99, 114906. [Google Scholar]
- Sader, J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998, 84, 64–76. [Google Scholar]
- Sader, J.E.; Chon, J.W.M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instr. 1999, 70, 3967–3969. [Google Scholar]
- Matei, G.; Jeffery, S.; Patil, S.; Khan, S.H.; Pantea, M.; Pethica, J.B.; Hoffmann, P.M. Simultaneous normal and shear measurements of nanoconfined liquids in a fiber-based atomic force microscope. Rev. Sci. Instr. 2008, 79, 023706. [Google Scholar]
- Bao, M.H.; Yang, H. Squeeze film damping in MEMS. Sens. Actuat. A: Phys. 2007, 136, 3–27. [Google Scholar]
- Veijola, T.; Lahdenpera, J. The influence of gas-surface interaction on gas film damping in a silicon accelerometer. Sens. Actuat. A: Phys. 1998, 66, 83–92. [Google Scholar]
- Song, Y.; Bhushan, B. Atomic force microscopy dynamic modes: modeling and applications. J. Phys.: Condens. Matter. 2008, 20, 225012. [Google Scholar]
- Andrews, M.; Harris, I.; Turner, G.A. comparison of squeeze-film theory with measurements on a microstructure. Sens. Actuat. A: Phys. 1993, 36, 79–87. [Google Scholar]
- Ostergaard, D. Using a heat transfer analogy to solve for squeeze film damping and stiffness coefficients in MEMS structures; ANSYS Inc.: Canonsburg, PA, USA, 23 January 2003. Available online: http://www.ansys.com/assets/tech-papers/mems-thermal-analogy-fsi-damping.pdf.
Description | Value |
---|---|
Length | 449 μm |
Width | 46 μm |
Thickness | 1.7 μm |
Tip radius | 150 nm |
Material density | 2,330 kg/m3 |
Young's modulus | 176 GPa |
Bending stiffness | 0.11 N·m-1 |
First-order resonant frequency | 11.804 kHz |
Quality factor | 100 |
Hamaker constant (Repulsive) | 1.3596 × 10-70 J·m6 |
Hamaker constant (Attractive) | 1.865 × 10-19 J |
Frequency f (Hz) | Damping coefficient | Stiffness coefficient | ||||
---|---|---|---|---|---|---|
PLANE55 | Analytic(slip) [27] | PLANE55 | Analytic(slip) [27] | |||
No slip | Slip | No slip | Slip | |||
1 | 1.5199e – 4 | 1.3499e – 4 | 1.2529e – 4 | 9.2051e – 10 | 7.2610e – 10 | 6.2304e – 10 |
1 000 | 1.5199e – 4 | 1.3499e – 4 | 1.2529e – 4 | 9.2051e – 4 | 7.2610e – 4 | 6.2304e – 4 |
11 804 | 1.5197e – 4 | 1.3497e – 4 | 1.2528e – 4 | 0.1282 | 0.1012 | 0.0868 |
50 000 | 1.5163e – 4 | 1.3473e – 4 | 1.2509e – 4 | 2.296 | 1.8118 | 1.555 |
100 000 | 1.5056e – 4 | 1.3398e – 4 | 1.2449e – 4 | 9.117 | 7.206 | 6.190 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, W.-M.; Meng, G.; Zhou, J.-B.; Chen, J.-Y. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects. Sensors 2009, 9, 3854-3874. https://doi.org/10.3390/s90503854
Zhang W-M, Meng G, Zhou J-B, Chen J-Y. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects. Sensors. 2009; 9(5):3854-3874. https://doi.org/10.3390/s90503854
Chicago/Turabian StyleZhang, Wen-Ming, Guang Meng, Jian-Bin Zhou, and Jie-Yu Chen. 2009. "Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects" Sensors 9, no. 5: 3854-3874. https://doi.org/10.3390/s90503854
APA StyleZhang, W.-M., Meng, G., Zhou, J.-B., & Chen, J.-Y. (2009). Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects. Sensors, 9(5), 3854-3874. https://doi.org/10.3390/s90503854