High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios
<p>Schematic diagram of the Low-Cost High-Resolution hyperspectral imager showing how axial and marginal rays pass through the optical system. Blue, green, and red lines represent example wavelength rays after diffraction has taken place. Not to scale.</p> "> Figure 2
<p>Example frames of an ammonite fossil taken from a hyperspectral data cube demonstrating the spatial resolution possible with this instrument. The first panel shows a standard color image of the target for reference. The additional panels show hyperspectral frames captured at focal lengths of 18 mm and 55 mm, respectively.</p> "> Figure 3
<p>The Low-Cost High-Resolution hyperspectral imager within a laboratory setting.</p> "> Figure 4
<p>Workflow used to capture a hyperspectral image with the Low-Cost High-Resolution instrument detailing image acquisition and post processing stages.</p> "> Figure 5
<p>Spectrum captured from a Mercury Argon lamp using the Low-Cost High-Resolution instrument highlighting the peaks present at 546.074 nm and 576.960 nm that were used to spectrally calibrate the instrument.</p> "> Figure 6
<p>CTF analysis for both focal lengths. (<b>A</b>,<b>B</b>) (<b>left</b>) show an image frame of the resolution target captured at an 18 mm focal length and a 55 mm focal length, respectively, (<b>C</b>) (<b>right</b>) shows the resulting CTF values for horizontal line pairs.</p> "> Figure 7
<p>Knife-edge measurements for each focal length. (<b>A</b>) shows the results for the 18 mm focal length demonstrating a one-pixel discrepancy between orientations. (<b>B</b>) shows results for the 55 mm focal length demonstrating a two-pixel discrepancy between orientations.</p> "> Figure 8
<p>Hyperspectral image frames of a gneiss sample demonstrating the spatial resolution of this instrument. Characteristic banding and surface features are clearly visible within the hyperspectral data and can be easily related to their specific location on the original target. The image on the left is a standard color image of the sample and the hyperspectral images are on the right-hand side of the figure. The hyperspectral images are just one slice through the data cube that contains 689 discrete wavelength values. RGB frames represent the availability of different wavelength frames within the hyperspectral data cube.</p> "> Figure 9
<p>Two hyperspectral image frames of a basalt sample compared to standard color images. Note the clarity of the surface features within the hyperspectral frames allowing clear differentiation between feldspar and surface features. The hyperspectral images are just one slice through the data cube that contains 689 discrete wavelength values. RGB frames represent the availability of different wavelength frames within the hyperspectral data cube.</p> "> Figure 10
<p>Spectral data for a piece of supraglacial debris with orange pigmentation. (<b>A</b>) shows a standard color image of the rock sample highlighting the approximate locations that correspond to the spectral curves shown in (<b>B</b>).</p> "> Figure 11
<p>Spectral and spatial information obtained for a sample of lapis lazuli. Note the expected increase in reflectance across blue wavelengths followed by a steady reduction in reflectance towards longer wavelengths. The hyperspectral images represent single slices through the data cube that contains 689 discrete wavelength values. The reconstructed RGB image is created using red-green-blue equivalent images taken from the hyperspectral data cube.</p> "> Figure 12
<p>Spectral data obtained from a sample of lapis lazuli. Deviations from the laboratory-measured spectrum are associated with regions of low signal within the illumination spectrum. Note the correlation between the spectral response curve and the spectral-spatial data shown in <a href="#sensors-22-04652-f011" class="html-fig">Figure 11</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Optical Characterisation
4. Discussion
Example Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, J.; Chen, J.; Zheng, X.; Wang, Y.; Guo, S.; Sun, H.; Jiang, C.; Karjalainen, M.; Karila, K.; Duan, Z.; et al. Tradeoffs in the Spatial and Spectral Resolution of Airborne Hyperspectral Imaging Systems: A Crop Identification Case Study. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5510918. [Google Scholar] [CrossRef]
- Jia, J.; Wang, Y.; Chen, J.; Guo, R.; Shu, R.; Wang, J. Status and application of advanced airborne hyperspectral imaging technology: A review. Infrared Phys. Technol. 2020, 104, 103115. [Google Scholar] [CrossRef]
- Yang, Q. Design study of a compact ultra-wide-angle high-spatial-resolution high-spectral-resolution snapshot imaging spectrometer. Opt. Express 2021, 29, 2893. [Google Scholar] [CrossRef]
- Brady, D.J. Optical Imaging and Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Barducci, A.; Guzzi, D.; Lastri, C.; Nardino, V.; Marcoionni, P.; Pippi, I. Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry. Appl. Opt. 2010, 49, 5366–5373. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.S.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, M.B.; Stanger, L.R.; Hobbs, M.J.; Pering, T.D.; Thio, D.; McGonigle, A.J.S.; Willmott, J.R. Low-cost hyperspectral imaging system: Design and testing for laboratory-based environmental applications. Sensors 2020, 20, 3293. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Raval, S.; Cullen, P.J. UAV-hyperspectral imaging of spectrally complex environments. Int. J. Remote Sens. 2020, 41, 4136–4159. [Google Scholar] [CrossRef]
- Wilkes, T.C.; Pering, T.D.; McGonigle, A.J.S.; Tamburello, G.; Willmott, J.R. A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements. Remote Sens. 2017, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Zhang, J.; Rivard, B.; Sánchez-Azofeifa, A.; Castro-Esau, K. Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery. Remote Sens. Environ. 2006, 105, 129–141. [Google Scholar] [CrossRef]
- Galieni, A.; Nicastro, N.; Pentangelo, A.; Platani, C.; Cardi, T.; Pane, C. Surveying soil-borne disease development on wild rocket salad crop by proximal sensing based on high-resolution hyperspectral features. Sci. Rep. 2022, 12, 5098. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Huang, K.; Sun, W.; Meng, X.; Mao, D.; Ge, Y. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS J. Photogramm. Remote Sens. 2022, 189, 236–254. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Yi, X.; Ma, L.; Zhang, L.; Huang, C.; Zhang, Z.; Lv, X. Estimation of cotton leaf area index (LAI) based on spectral transformation and vegetation index. Remote Sens. 2022, 14, 136. [Google Scholar] [CrossRef]
- Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending geometallurgy to the mine scale with hyperspectral imaging: A pilot study using drone- and ground-based scanning. Min. Metall. Explor. 2021, 38, 799–818. [Google Scholar] [CrossRef]
- Parbhaker-Fox, A.; Lottermoser, B.; Bradshaw, D.J. Cost-Effective Means for Identifying Acid Rock Drainage Risks—Integration of the Geochemistry- Mineralogy-Texture Approach and Geometallurgical Techniques. In Proceedings of the Second Ausimm International Geometallurgy Conference, Brisbane, Australia, 2 October 2013; pp. 143–154. [Google Scholar]
- Gallie, E.A.; McArdle, S.; Rivard, B.; Francis, H. Estimating sulphide ore grade in broken rock using visible/infrared hyperspectral reflectance spectra. Int. J. Remote Sens. 2002, 23, 2229–2246. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Graham, G.E.; Hoefen, T.M.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E.; Buchhorn, M.; Prakash, A. Multiscale Hyperspectral Imaging of the Orange Hill Porphyry Copper Deposit, Alaska, USA, with Laboratory-, Field-, and Aircraft-based Imaging Spectrometers. Proc. Explor. 2017, 17, 923–943. [Google Scholar]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Sabins, F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; et al. Using imaging spectroscopy to map acidic mine waste. Environ. Sci. Technol. 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Shang, J.; Morris, B.; Howarth, P.; Lévesque, J.; Staenz, K.; Neville, B. Mapping mine tailing surface mineralogy using hyperspectral remote sensing. Can. J. Remote Sens. 2009, 35, S126–S141. [Google Scholar] [CrossRef]
- Nikonow, W.; Rammlmair, D.; Meima, J.A.; Schodlok, M.C. Advanced mineral characterization and petrographic analysis by μ-EDXRF, LIBS, HSI and hyperspectral data merging. Mineral. Petrol. 2019, 113, 417–431. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharya, S.; Omkar, S.N. Automated large-scale mapping of the Jahazpur mineralized belt by a MapReduce model with an integrated ELM method. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 191–209. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Rezaee, R.; Laukamp, C.; Pejcic, B.; Smith, G. Integrated sedimentary and high-resolution mineralogical characterization of Ordovician shale from Canning Basin, Western Australia: Implications for facies heterogeneity evaluation. J. Pet. Sci. Eng. 2021, 208, 109347. [Google Scholar] [CrossRef]
- Lombi, E.; De Jonge, M.D.; Donner, E.; Ryan, C.G.; Paterson, D. Trends in hard X-ray fluorescence mapping: Environmental applications in the age of fast detectors. Anal. Bioanal. Chem. 2011, 400, 1637–1644. [Google Scholar] [CrossRef]
- Belissont, R.; Muñoz, M.; Boiron, M.C.; Luais, B.; Mathon, O. Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: Insights into Ge incorporation, partitioning and isotopic fractionation. Geochim. Cosmochim. Acta 2016, 177, 298–314. [Google Scholar] [CrossRef]
- Flude, S.; Storey, M. 40Ar/39Ar age of the Rotoiti Breccia and Rotoehu Ash, Okataina Volcanic Complex, New Zealand, and identification of heterogeneously distributed excess 40Ar in supercooled crystals. Quat. Geochronol. 2016, 33, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Melcher, F.; Oberthür, T.; Rammlmair, D. Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu-Zn-Pb-Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geol. Rev. 2006, 28, 32–56. [Google Scholar] [CrossRef]
- Bower, D.M.; Yang, C.S.C.; Hewagama, T.; Nixon, C.A.; Aslam, S.; Whelley, P.L.; Eigenbrode, J.L.; Jin, F.; Ruliffson, J.; Kolasinski, J.R.; et al. Spectroscopic characterization of samples from different environments in a Volcano-Glacial region in Iceland: Implications for in situ planetary exploration. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120205. [Google Scholar] [CrossRef]
- Amici, S.; Piscini, A.; Neri, M. Reflectance Spectra Measurements of Mt. Etna: A Comparison with Multispectral/Hyperspectral Satellite. Adv. Remote Sens. 2014, 3, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Capaccioni, F.; Bellucci, G.; Orosei, R.; Amici, S.; Bianchi, R.; Blecka, M.; Capria, M.T.; Coradini, A.; Erard, S.; Fonti, S.; et al. Mars-IRMA: In-situ infrared microscope analysis of Martian soil and rock samples. Adv. Space Res. 2001, 28, 1219–1224. [Google Scholar] [CrossRef]
- Sgavetti, M.; Pompilio, L.; Roveri, M.; Manzi, V.; Valentino, G.M.; Lugli, S.; Carli, C.; Amici, S.; Marchese, F.; Lacava, T. Two geologic systems providing terrestrial analogues for the exploration of sulfate deposits on Mars: Initial spectral characterization. Planet. Space Sci. 2009, 57, 614–627. [Google Scholar] [CrossRef]
- Amici, S.; Piscini, A.; Buongiorno, M.F.; Pieri, D. Geological classification of Volcano Teide by hyperspectral and multispectral satellite data. Int. J. Remote Sens. 2013, 34, 3356–3375. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Hobbs, M.J.; Masters, R.C.; Rodenburg, C.; Willmott, J.R. An accurate device for apparent emissivity characterization in controlled atmospheric conditions up to 1423 K. IEEE Trans. Instrum. Meas. 2020, 69, 4210–4221. [Google Scholar] [CrossRef]
- Stanger, L.; Rockett, T.; Lyle, A.; Davies, M.; Anderson, M.; Todd, I.; Basoalto, H.; Willmott, J.R. Reconstruction of microscopic thermal fields from oversampled infrared images in laser-based powder bed fusion. Sensors 2021, 21, 4859. [Google Scholar] [CrossRef]
- Davies, M.; Stuart, M.B.; Hobbs, M.; McGonigle, A.; Willmott, J.R. Image Correction and In-Situ Spectral Calibration for Low-Cost Smartphone Hyperspectral Imaging. Remote Sens. 2022, 14, 1152. [Google Scholar] [CrossRef]
Component | Part Used |
---|---|
Objective Lens | Canon EF-S 18–55 mm |
Slit | Thorlabs VA100C (set at 300 μm). |
Collimating Lens | Thorlabs MVL75M1 75 mm telephoto c mount |
Transmission Diffraction Grating | Edmund Optics #49-580 |
Focusing Lens | Thorlabs MVL50M23 50 mm telephoto c mount |
Camera Sensor | Hamamatsu C13440 |
Setting | |
---|---|
Exposure Time (ms) | 60 |
Wavelength Range (nm) | 450–650 |
Spectral Resolution (FWHM) (nm) | 0.29 |
Spatial Resolution (pixels) | 1000 × 1000 |
Focal Lengths (mm) | 18 and 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuart, M.B.; Davies, M.; Hobbs, M.J.; Pering, T.D.; McGonigle, A.J.S.; Willmott, J.R. High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios. Sensors 2022, 22, 4652. https://doi.org/10.3390/s22124652
Stuart MB, Davies M, Hobbs MJ, Pering TD, McGonigle AJS, Willmott JR. High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios. Sensors. 2022; 22(12):4652. https://doi.org/10.3390/s22124652
Chicago/Turabian StyleStuart, Mary B., Matthew Davies, Matthew J. Hobbs, Tom D. Pering, Andrew J. S. McGonigle, and Jon R. Willmott. 2022. "High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios" Sensors 22, no. 12: 4652. https://doi.org/10.3390/s22124652
APA StyleStuart, M. B., Davies, M., Hobbs, M. J., Pering, T. D., McGonigle, A. J. S., & Willmott, J. R. (2022). High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios. Sensors, 22(12), 4652. https://doi.org/10.3390/s22124652