Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Criteria for Study Selection
3. HSI for Artwork Authentication
4. HSI for Document Forgery Detection
5. HSI for Counterfeit Currency Detection
6. HSI for Photo Authentication
7. HSI for Hologram Authentication
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, E.J.; Weber, W.E. Will the new $100 bill decrease counterfeiting. Fed. Reserve Bank Minneap. Q. Rev. 1996, 20, 3–10. [Google Scholar] [CrossRef]
- Quercioli, E.; Smith, L. The economics of counterfeiting. Econometrica 2015, 83, 1211–1236. [Google Scholar] [CrossRef]
- Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.; Eastaugh, N.; Eastaugh, F. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. C. Herit. 2017, 26, 1–11. [Google Scholar] [CrossRef]
- Eastaugh, N.; Nadolny, J. Science for the art market: A buyer’s guide. ArtBanc Market Intell. 2007, 7, 33–37. [Google Scholar]
- Hardach, S. The Surprising Secrets of Busting art Forgeries. Available online: https://www.bbc.com/culture/article/20151015-the-surprising-secrets-of-busting-art-forgeries (accessed on 13 April 2022).
- McAndrew, C. TEFAF Art Market Report 2015; The European Fine Art Foundation (TEFAF): Helvoirt, The Netherlands, 2015. [Google Scholar]
- Silva, C.S.; Pimentel, M.F.; Honorato, R.S.; Pasquini, C.; Prats-Montalbán, J.M.; Ferrer, A. Near infrared hyperspectral imaging for forensic analysis of document forgery. Analyst 2014, 139, 5176–5184. [Google Scholar] [CrossRef]
- Counterfeit Currency and Security Documents. Available online: https://www.interpol.int/en/Crimes/Counterfeit-currency-and-security-documents (accessed on 24 April 2022).
- Koppenhaver, K.M. History of Forgery. Forensic Document Examination: Principles and Practice; Humana Press: Totowa, NJ, USA, 2007; pp. 47–54. [Google Scholar]
- Land, E.H.; McCann, J.J. Lightness and retinex theory. JOSA 1971, 61, 1–11. [Google Scholar] [CrossRef]
- Lee, M.; Kim, K.; Min, G.; Son, D.; Kim, J.; Kim, S. Recent trends of hyperspectral imaging technology. Electron. Telecommun. Trends 2019, 34, 86–97. [Google Scholar]
- Hövels, A.; Heesakkers, R.; Adang, E.; Jager, G.; Strum, S.; Hoogeveen, Y.; Severens, J.; Barentsz, J. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin. Radiol. 2008, 63, 387–395. [Google Scholar] [CrossRef]
- Paty, D.; Oger, J.; Kastrukoff, L.; Hashimoto, S.; Hooge, J.; Eisen, A.; Eisen, K.; Purves, S.; Low, M.; Brandejs, V. MRI in the diagnosis of MS: A prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology 1988, 38, 180. [Google Scholar] [CrossRef]
- Kumar, S.; Desmedt, C.; Larsimont, D.; Sotiriou, C.; Goormaghtigh, E. Change in the microenvironment of breast cancer studied by FTIR imaging. Analyst 2013, 138, 4058–4065. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, Q. Tongue tumor detection in medical hyperspectral images. Sensors 2011, 12, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Dicker, D.T.; Lerner, J.; van Belle, P.; Guerry, D., 4th; Herlyn, M.; Elder, D.E.; El-Deiry, W.S. Differentiation of normal skin and melanoma using high resolution hyperspectral imaging. Cancer Biol. Ther. 2006, 5, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.-Y.; Tseng, K.-W.; Nguyen, H.-T.; Kuo, C.-T.; Wang, H.-C. Hyperspectral Ophthalmoscope Images for the Diagnosis of Diabetic Retinopathy Stage. J. Clin. Med. 2020, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Syu, H.-Y.; Wang, Y.-L.; Lai, C.-J.; Huang, S.-Y.; Wang, H.-C. Identifying the incidence level of periodontal disease through hyperspectral imaging. Opt. Quantum Electron. 2018, 50, 1–14. [Google Scholar] [CrossRef]
- Wu, I.; Syu, H.-Y.; Jen, C.-P.; Lu, M.-Y.; Chen, Y.-T.; Wu, M.-T.; Kuo, C.-T.; Tsai, Y.-Y.; Wang, H.-C. Early identification of esophageal squamous neoplasm by hyperspectral endoscopic imaging. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Akbari, H.; Uto, K.; Kosugi, Y.; Kojima, K.; Tanaka, N. Cancer detection using infrared hyperspectral imaging. Cancer Sci. 2011, 102, 852–857. [Google Scholar] [CrossRef]
- Akbari, H.; Halig, L.; Schuster, D.M.; Fei, B.; Osunkoya, A.; Master, V.; Nieh, P.; Chen, G. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 2012, 17, 076005. [Google Scholar] [CrossRef]
- Martin, M.E.; Wabuyele, M.B.; Chen, K.; Kasili, P.; Panjehpour, M.; Phan, M.; Overholt, B.; Cunningham, G.; Wilson, D.; DeNovo, R.C. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann. Biomed. Eng. 2006, 34, 1061–1068. [Google Scholar] [CrossRef]
- Halicek, M.; Fabelo, H.; Ortega, S.; Callico, G.M.; Fei, B. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible features of cancer. Cancers 2019, 11, 756. [Google Scholar] [CrossRef]
- Aboughaleb, I.H.; Aref, M.H.; El-Sharkawy, Y.H. Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer. Photodiagn. Photodyn. Ther. 2020, 31, 101922. [Google Scholar] [CrossRef]
- Kiyotoki, S.; Nishikawa, J.; Okamoto, T.; Hamabe, K.; Saito, M.; Goto, A.; Fujita, Y.; Hamamoto, Y.; Takeuchi, Y.; Satori, S. New method for detection of gastric cancer by hyperspectral imaging: A pilot study. J. Biomed. Opt. 2013, 18, 026010. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, A.; Feng, S.-W.; Weng, Y.-H.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-P.; Mukundan, A.; Chen, W.-C.; Wu, M.-T.; Hsieh, S.-C.; Wang, H.-C. Design of a Lab-On-Chip for Cancer Cell Detection through Impedance and Photoelectrochemical Response Analysis. Biosensors 2022, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-J.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Identification of Early Esophageal Cancer by Semantic Segmentation. J. Pers. Med. 2022, 12, 1204. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Mukundan, A.; Chang, S.-C.; Wang, Y.-L.; Lu, S.-H.; Huang, Y.-C.; Wang, H.-C. Comparative Analysis of Stress and Deformation between One-Fenced and Three-Fenced Dental Implants Using Finite Element Analysis. J. Clin. Med. 2021, 10, 3986. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-J.; Mukundan, A.; Chi, Y.-S.; Tsao, Y.-M.; Wang, Y.-K.; Chen, T.-H.; Wu, I.-C.; Huang, C.-W.; Wang, H.-C. Intelligent Identification of Early Esophageal Cancer by Band-Selective Hyperspectral Imaging. Cancers 2022, 14, 4292. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Chan, D.E.; Delwiche, S.R.; Cho, B.-K. Line-scan hyperspectral imaging techniques for food safety and quality applications. Appl. Sci. 2017, 7, 125. [Google Scholar] [CrossRef]
- Jarolmasjed, S.; Khot, L.R.; Sankaran, S. Hyperspectral imaging and spectrometry-derived spectral features for bitter pit detection in storage apples. Sensors 2018, 18, 1561. [Google Scholar] [CrossRef]
- Park, B.; Lu, R. Hyperspectral Imaging Technology in Food and Agriculture; Springer: New York, NY, USA, 2015; Volume 1. [Google Scholar]
- Sun, D.-W. Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Chu, X.; Miao, P.; Zhang, K.; Wei, H.; Fu, H.; Liu, H.; Jiang, H.; Ma, Z. Green Banana maturity classification and quality evaluation using hyperspectral imaging. Agriculture 2022, 12, 530. [Google Scholar] [CrossRef]
- Kim, M.S.; Chen, Y.; Mehl, P. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. ASAE 2001, 44, 721. [Google Scholar]
- Kim, M.; Lefcourt, A.; Chao, K.; Chen, Y.; Kim, I.; Chan, D. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near–infrared reflectance imaging. Trans. ASAE 2002, 45, 2027. [Google Scholar]
- Li, X.; Li, R.; Wang, M.; Liu, Y.; Zhang, B.; Zhou, J. Hyperspectral imaging and their applications in the nondestructive quality assessment of fruits and vegetables. In Hyperspectral Imaging in Agriculture, Food and Environment; IntechOpen: London, UK, 2017; pp. 27–63. [Google Scholar]
- Zhao, J.; Kechasov, D.; Rewald, B.; Bodner, G.; Verheul, M.; Clarke, N.; Clarke, J.L. Deep Learning in Hyperspectral Image Reconstruction from Single RGB images—A Case Study on Tomato Quality Parameters. Remote Sens. 2020, 12, 3258. [Google Scholar] [CrossRef]
- Fong, A.; Shu, G.; McDonogh, B. Farm to Table: Applications for New Hyperspectral Imaging Technologies in Precision Agriculture, Food Quality and Safety. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 10–15 May 2020; p. AW3K. 2. [Google Scholar]
- Men, H.; Yuan, H.; Shi, Y.; Liu, M.; Wang, Q.; Liu, J. A residual network with attention module for hyperspectral information of recognition to trace the origin of rice. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 263, 120155. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yuan, W.; Ru, Y.; Chen, Q.; Wang, J.; Zhou, H. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 282, 121689. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.; Stann, B.; Gupta, N. Multispectral, Hyperspectral, and Three-Dimensional Imaging Research at the US Army Research Laboratory; Army Research Lab: Adelphi, MD, USA, 2003. [Google Scholar]
- Yuen, P.W.; Bishop, G. Hyperspectral multiple approach fusion for the long-range detection of low observable objects: MUF2. In Proceedings of the Electro-Optical Remote Sensing II, Stockholm, Sweden, 5 October 2006; pp. 56–67. [Google Scholar]
- Suganthi, G.; Reeba, K. Discrimination of mine-like objects in infrared images using artificial neural network. Indian J. Appl. Res. 2014, 4, 206–208. [Google Scholar]
- Letalick, D.; Renhorn, I.; Steinvall, O. Multi-optical mine detection system (MOMS) final report. FOI Swed. Def. Res. Agency Tech. Rep. 2009, 6217. Available online: https://https://www.foi.se/rest-api/report/FOI-R--2902--SE (accessed on 20 September 2022).
- Thomas, A.M.; Cathcart, J.M. Applications of grid pattern matching to the detection of buried landmines. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3465–3470. [Google Scholar] [CrossRef]
- Briottet, X.; Boucher, Y.; Dimmeler, A.; Malaplate, A.; Cini, A.; Diani, M.; Bekman, H.; Schwering, P.; Skauli, T.; Kasen, I. Military applications of hyperspectral imagery. In Proceedings of the Targets and backgrounds XII: Characterization and representation, Orlando, FL, USA, 4 May 2006; pp. 82–89. [Google Scholar]
- Ardouin, J.-P.; Lévesque, J.; Rea, T.A. A demonstration of hyperspectral image exploitation for military applications. In Proceedings of the 2007 10th International Conference on Information Fusion, Quebec, QC, Canada, 9–12 July 2007; pp. 1–8. [Google Scholar]
- Richter, R. Hyperspectral Sensors for Military Applications; German Aerospace Center: Wessling, Germany, 2005. [Google Scholar]
- Eismann, M.T.; Schwartz, C.R.; Cederquist, J.N.; Hackwell, J.A.; Huppi, R.J. Comparison of infrared imaging hyperspectral sensors for military target detection applications. In Proceedings of the Imaging Spectrometry II, Denver, CO, USA, 13 November 1996; pp. 91–101. [Google Scholar]
- Tiwari, K.; Arora, M.K.; Singh, D. An assessment of independent component analysis for detection of military targets from hyperspectral images. Int. J. Appl. Earth Obs. Geoinform. 2011, 13, 730–740. [Google Scholar] [CrossRef]
- Ke, C. Military object detection using multiple information extracted from hyperspectral imagery. In Proceedings of the 2017 International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 15–17 December 2017; pp. 124–128. [Google Scholar]
- Lampropoulos, G.A.; Liu, T.; Qian, S.-E.; Fei, C. Hyperspectral classification fusion for classifying different military targets. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. III-262–III-265. [Google Scholar]
- Montembeault, Y.; Lagueux, P.; Farley, V.; Villemaire, A.; Gross, K.C. Hyper-Cam: Hyperspectral IR imaging applications in defence innovative research. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Yuen, P.W.; Bishop, G. Hyperspectral algorithm development for military applications: A multiple fusion approach. In Proceedings of the 3rd EMRS DTC Technical Conference, Bristol, UK, 17-19 July 2006; pp. 16–17. [Google Scholar]
- Gross, W.; Queck, F.; Vögtli, M.; Schreiner, S.; Kuester, J.; Böhler, J.; Mispelhorn, J.; Kneubühler, M.; Middelmann, W. A multi-temporal hyperspectral target detection experiment: Evaluation of military setups. In Proceedings of the Target and Background Signatures VII, Online, 12 September 2021; pp. 38–48. [Google Scholar]
- Tusa, L.; Andreani, L.; Khodadadzadeh, M.; Contreras, C.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J. Mineral mapping and vein detection in hyperspectral drill-core scans: Application to porphyry-type mineralization. Minerals 2019, 9, 122. [Google Scholar] [CrossRef]
- Li, K.-C.; Lu, M.-Y.; Nguyen, H.T.; Feng, S.-W.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Intelligent identification of MoS2 nanostructures with hyperspectral imaging by 3D-CNN. Nanomaterials 2020, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Keshava, N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1552–1565. [Google Scholar] [CrossRef]
- Healey, G.; Slater, D. Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2706–2717. [Google Scholar] [CrossRef]
- Li, F.; Ng, M.K.; Plemmons, R.J. Coupled segmentation and denoising/deblurring models for hyperspectral material identification. Numer. Linear Algebra Appl. 2012, 19, 153–173. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Plemmons, R.J.; Pauca, V.P.l. Tensor methods for hyperspectral data analysis: A space object material identification study. JOSA A 2008, 25, 3001–3012. [Google Scholar] [CrossRef]
- Stein, D.W.J. Material identification and classification in hyperspectral imagery using the normal compositional model. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Greenbelt, MD, USA, 27–28 October 2003; pp. 559–568. [Google Scholar]
- Li, F.; Ng, M.K.; Plemmons, R.; Prasad, S.; Zhang, Q. Hyperspectral image segmentation, deblurring, and spectral analysis for material identification. In Proceedings of the Visual Information Processing XIX, Orlando, FL, USA, 6 April 2010; pp. 21–32. [Google Scholar]
- Kruse, F. Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra. Int. J. Remote Sens. 1996, 17, 1623–1632. [Google Scholar] [CrossRef]
- Yousefi, B.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G. Assessing the reliability of an automated system for mineral identification using LWIR Hyperspectral Infrared imagery. Miner. Eng. 2020, 155, 106409. [Google Scholar] [CrossRef]
- Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Beaudoin, G.; Huot, F.; Maldague, X.P.; Chamberland, M.; Lalonde, E. Mineral identification in hyperspectral imaging using Sparse-PCA. In Proceedings of the Thermosense: Thermal infrared applications XXXVIII, Baltimore, MA, USA, 11 May 2016; pp. 312–322. [Google Scholar]
- Mielke, C.; Rogass, C.; Boesche, N.; Segl, K.; Altenberger, U. EnGeoMAP 2.0—Automated hyperspectral mineral identification for the German EnMAP space mission. Remote Sens. 2016, 8, 127. [Google Scholar] [CrossRef]
- Fox, N.; Parbhakar-Fox, A.; Moltzen, J.; Feig, S.; Goemann, K.; Huntington, J. Applications of hyperspectral mineralogy for geoenvironmental characterisation. Miner. Eng. 2017, 107, 63–77. [Google Scholar] [CrossRef]
- Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing: Principles and Applications; CRC press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Goetz, A.F.; Rowan, L.C. Geologic remote sensing. Science 1981, 211, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, D.; Bharti, R. Hyperspectral remote sensing and geological applications. Curr. Sci. 2015, 108, 879–891. [Google Scholar]
- Wan, Y.; Fan, Y.; Jin, M. Application of hyperspectral remote sensing for supplementary investigation of polymetallic deposits in Huaniushan ore region, northwestern China. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Dong, X.; Gan, F.; Yan, B.; Zhu, W. Application of hyperspectral remote sensing technology to regional geological survey and mapping in bedrock area. Geol. Bull. China 2021, 40, 13–21. [Google Scholar]
- Wang, Z.; Tian, S. Ground object information extraction from hyperspectral remote sensing images using deep learning algorithm. Microprocess. Microsyst. 2021, 87, 104394. [Google Scholar] [CrossRef]
- Mukundan, A.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Growth Mechanism of Periodic-Structured MoS2 by Transmission Electron Microscopy. Nanomaterials 2021, 12, 135. [Google Scholar] [CrossRef]
- Hege, E.K.; O’Connell, D.; Johnson, W.; Basty, S.; Dereniak, E.L. Hyperspectral imaging for astronomy and space surveillance. In Proceedings of the Imaging Spectrometry IX, San Diego, CA, USA, 7 January 2004; pp. 380–391. [Google Scholar]
- Wood, K.; Gulian, A.; Fritz, G.; VanVechten, D. A QVD detector for focal plane hyperspectral imaging in astronomy. In Proceedings of the 201st American Astronomical Society Meeting Abstracts, Seattle, WA, USA, 5–9 January 2003; p. 1241. [Google Scholar]
- Rafert, B.; Sellar, R.G.; Holbert, E.; Blatt, J.H.; Tyler, D.W.; Durham, S.E.; Newby, H.D. Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations. In Proceedings of the Instrumentation in Astronomy VIII, Kona, HI, USA, 1 June 1994; pp. 338–349. [Google Scholar]
- Courbot, J.-B.; Mazet, V.; Monfrini, E.; Collet, C. Pairwise Markov fields for segmentation in astronomical hyperspectral images. Signal Process. 2019, 163, 41–48. [Google Scholar] [CrossRef]
- Scholl, J.F.; Hege, E.K.; Hart, M.; O’Connell, D.; Dereniak, E.L. Flash hyperspectral imaging of non-stellar astronomical objects. In Proceedings of the Mathematics of Data/Image Pattern Recognition, Compression, and Encryption with Applications XI, San Diego, CA, USA, 5 September 2008; pp. 145–156. [Google Scholar]
- Guilloteau, C.; Oberlin, T.; Berné, O.; Dobigeon, N. Hyperspectral and multispectral image fusion under spectrally varying spatial blurs–Application to high dimensional infrared astronomical imaging. IEEE Trans. Comput. Imaging 2020, 6, 1362–1374. [Google Scholar] [CrossRef]
- Courbot, J.-B.; Mazet, V.; Monfrini, E.; Collet, C. Extended faint source detection in astronomical hyperspectral images. Signal Process. 2017, 135, 274–283. [Google Scholar] [CrossRef]
- Petremand, M.; Jalobeanu, A.; Collet, C. Optimal bayesian fusion of large hyperspectral astronomical observations. Stat. Methodol. 2012, 9, 44–54. [Google Scholar] [CrossRef]
- Jalobeanu, A.; Petremand, M.; Collet, C. Bayesian fusion of hyperspectral astronomical images. In Proceedings of the AIP Conference, Chamonix, France, 14 March 2010; pp. 295–302. [Google Scholar]
- Merenyi, E. Hyperspectral Image Analysis in Planetary Science and Astronomy. In Proceedings of the American Astronomical Society Meeting Abstracts# 223, National Harbor, MD, USA, 5–9 January 2014. [Google Scholar]
- Mukundan, A.; Wang, H.-C. Simplified Approach to Detect Satellite Maneuvers Using TLE Data and Simplified Perturbation Model Utilizing Orbital Element Variation. Appl. Sci. 2021, 11, 10181. [Google Scholar] [CrossRef]
- Baeck, P.; Blommaert, J.; Delalieux, S.; Delauré, B.; Livens, S.; Nuyts, D.; Sima, A.; Jacquemin, G.; Goffart, J.; Nv, V. High resolution vegetation mapping with a novel compact hyperspectral camera system. In Proceedings of the 13th International Conference on Precision Agriculture, St. Louis, MO, USA, 31 July–4 August 2016. [Google Scholar]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Quantification of soil properties with hyperspectral data: Selecting spectral variables with different methods to improve accuracies and analyze prediction mechanisms. Remote Sens. 2017, 9, 1103. [Google Scholar] [CrossRef]
- Chen, C.-W.; Tseng, Y.-S.; Mukundan, A.; Wang, H.-C. Air Pollution: Sensitive Detection of PM2. 5 and PM10 Concentration Using Hyperspectral Imaging. Appl. Sci. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sahoo, R.N.; Ray, S.; Manjunath, K. Hyperspectral remote sensing of agriculture. Curr. Sci. 2015, 108, 848–859. [Google Scholar]
- Achard, V.; Foucher, P.-Y.; Dubucq, D. Hydrocarbon pollution detection and mapping based on the combination of various hyperspectral imaging processing tools. Remote Sens. 2021, 13, 1020. [Google Scholar] [CrossRef]
- Sun, J.; Cao, Y.; Zhou, X.; Wu, M.; Sun, Y.; Hu, Y. Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology. J. Food Saf. 2021, 41, e12866. [Google Scholar] [CrossRef]
- Homma, K.; Shibayama, M.; Yamamoto, H.; Sugahara, K.; Shingu, H. Water pollution monitoring using a hyperspectral imaging spectropolarimeter. In Proceedings of the Multispectral and Hyperspectral Remote Sensing Instruments and Applications II, Honolulu, HI, USA, 20 January 2005; pp. 419–426. [Google Scholar]
- Achard, V.; Elin, C. Automatic mapping of hydrocarbon pollution based on hyperspectral imaging. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5768–5771. [Google Scholar]
- Lennon, M.; Babichenko, S.; Thomas, N.; Mariette, V.; Mercier, G.; Lisin, A. Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence. EARSeL eProceedings 2006, 5, 120–128. [Google Scholar]
- Wei, L.; Huang, C.; Wang, Z.; Wang, Z.; Zhou, X.; Cao, L. Monitoring of urban black-odor water based on Nemerow index and gradient boosting decision tree regression using UAV-borne hyperspectral imagery. Remote Sens. 2019, 11, 2402. [Google Scholar] [CrossRef]
- Mukundan, A.; Huang, C.-C.; Men, T.-C.; Lin, F.-C.; Wang, H.-C. Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique. Sensors 2022, 22, 6231. [Google Scholar] [CrossRef]
- Mukundan, A.; Patel, A.; Saraswat, K.D.; Tomar, A.; Kuhn, T. Kalam Rover. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1047. [Google Scholar]
- Reddy, A.; Mukundan, A. The Strategic Needs Necessary for Sustainable Marine Ecology Horizon 2030. Int. J. Innov. Res. Sci. Eng. Technol. 2020, 5, 1141–1147. [Google Scholar] [CrossRef]
- Rosi, F.; Grazia, C.; Fontana, R.; Gabrieli, F.; Buemi, L.P.; Pampaloni, E.; Romani, A.; Stringari, C.; Miliani, C. Disclosing Jackson Pollock’s palette in Alchemy (1947) by non-invasive spectroscopies. Herit. Sci. 2016, 4, 1–13. [Google Scholar] [CrossRef]
- Luo, Z.; Shafait, F.; Mian, A. Localized forgery detection in hyperspectral document images. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 496–500. [Google Scholar]
- Khan, Z.; Shafait, F.; Mian, A.S. Towards automated hyperspectral document image analysis. In Proceedings of the AFHA, Washington, DC, USA, 22–23 August 2013; pp. 41–45. [Google Scholar]
- Chlebda, D.K.; Majda, A.; Łojewski, T.; Łojewska, J. Hyperspectral imaging coupled with chemometric analysis for non-invasive differentiation of black pens. Appl. Phys. A 2016, 122, 1–13. [Google Scholar] [CrossRef]
- Nandanwar, L.; Shivakumara, P.; Pal, U.; Lu, T.; Lopresti, D.; Seraogi, B.; Chaudhuri, B.B. A new method for detecting altered text in document images. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, 2160010. [Google Scholar] [CrossRef]
- Lim, H.-T.; Murukeshan, V.M. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library. Opt. Lasers Eng. 2017, 98, 168–175. [Google Scholar] [CrossRef]
- Tournié, A.; Carré, P.; Andraud, C.; Boust, C.; Lavédrine, B. Identification of chromogenic colour photographic print brand by fiber optical reflectance spectroscopy and statistical analysis. J. C. Herit. 2017, 26, 28–35. [Google Scholar] [CrossRef]
- Sumriddetchkajorn, S.; Intaravanne, Y. Hyperspectral imaging-based credit card verifier structure with adaptive learning. Appl. Opt. 2008, 47, 6594–6600. [Google Scholar] [CrossRef] [PubMed]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Adriaens, M. COST Action G8: Non-destructive analysis and testing of museum objects. In Proceedings of the Conference “Cultural Heritage Research: A Pan-European Challenge”, Krakow, Poland, 16–18 May 2002; pp. 187–188. [Google Scholar]
- Smith, G.D.; Hamm, J.F.; Kushel, D.A.; Rogge, C.E. What’s wrong with this picture? The technical analysis of a known forgery. In Collaborative Endeavors in the Chemical Analysis of Art and Cultural Heritage Materials; ACS Publications: Washington, DC, USA, 2012; pp. 1–21. [Google Scholar]
- Mantler, M.; Schreiner, M. X-ray fluorescence spectrometry in art and archaeology. X-ray Spectrom. Int. J. 2000, 29, 3–17. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.; Stratoudaki, T.; Doulgeridis, M.; Anglos, D. Pigment identification in painted artworks: A dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy. Appl. Spectrosc. 2000, 54, 463–469. [Google Scholar] [CrossRef]
- Best, S.P.; Clark, R.J.; Withnall, R. Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour 1992, 16, 66–73. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification; Department of Computer Science and Information Engineering, University of National Taiwan: Taipei, Taiwan, 2003; Available online: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 20 September 2022).
- Du, P.; Li, G.; Zhang, W.; Wang, X.; Sun, H. Consistency measure of multiple classifiers for land cover classification by remote sensing image. In Proceedings of the International Workshop on Multiple Classifier Systems, Reykjavik, Iceland, 10–12 June 2009; pp. 398–407. [Google Scholar]
- Casini, A.; Cucci, C.; Picollo, M.; Stefani, L.; Vitorino, T. Creation of a hyperspectral imaging reference database of red lake pigments. COSCH e-Bulletin 2015. Available online: https://cosch.info/images/2015_casini%20et%20al.pdf (accessed on 20 September 2022).
- Daniel, F.; Mounier, A.; Pérez-Arantegui, J.; Pardos, C.; Prieto-Taboada, N.; de Vallejuelo, S.F.-O.; Castro, K. Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain). Microchem. J. 2016, 126, 113–120. [Google Scholar] [CrossRef]
- Deborah, H.; Richard, N.; Hardeberg, J.Y. Vector crack detection for cultural heritage paintings. In Proceedings of the Traitement et Analyse de l’Information, Méthodes et Applications (TAIMA), Hammamet, Tunisia, 28 May-2 June 2015. [Google Scholar]
- Wang, Z.; Lu, D.; Zhang, D.; Sun, M.; Zhou, Y. Fake modern Chinese painting identification based on spectral–spatial feature fusion on hyperspectral image. Multidimens. Syst. Signal Process. 2016, 27, 1031–1044. [Google Scholar] [CrossRef]
- Grabowski, B.; Masarczyk, W.; Głomb, P.; Mendys, A. Automatic pigment identification from hyperspectral data. J. C. Herit. 2018, 31, 1–12. [Google Scholar] [CrossRef]
- Blažek, J.; Striová, J.; Fontana, R.; Zitová, B. Improvement of the visibility of concealed features in artwork NIR reflectograms by information separation. Digit. Signal Process. 2017, 60, 140–151. [Google Scholar] [CrossRef]
- Harkins, T.; Harris, J.; Shreve, O. Identification of pigments in paint products by infrared spectroscopy. Anal. Chem. 1959, 31, 541–545. [Google Scholar] [CrossRef]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 2015, 896, 34–51. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, C. Hyperspectral Image Processing; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Qureshi, R.; Uzair, M.; Khurshid, K.; Yan, H. Hyperspectral document image processing: Applications, challenges and future prospects. Pattern Recognit. 2019, 90, 12–22. [Google Scholar] [CrossRef]
- Bansinge, M.D.; Tekade, P.V.; Bajaj, S.D.; Mahodaya, O.; Barwat, N.A. Analysis of Different Ball Point Pen Inks Using Thin Layer Chromatography and Comparison with FTIR Spectrometer. Chem. Sci. 2019, 8, 160–171. [Google Scholar]
- de Borba, F.S.L.; Jawhari, T.; Honorato, R.S.; de Juan, A. Confocal Raman imaging and chemometrics applied to solve forensic document examination involving crossed lines and obliteration cases by a depth profiling study. Analyst 2017, 142, 1106–1118. [Google Scholar] [CrossRef]
- Maybury, I.J.; Howell, D.; Terras, M.; Viles, H. Comparing the effectiveness of hyperspectral imaging and Raman spectroscopy: A case study on Armenian manuscripts. Herit. Sci. 2018, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.F.Q.; Silva, C.S.; Braz, A.; Pimentel, M.F.; Honorato, R.S.; Pasquini, C.; Wentzell, P.D. Projection pursuit and PCA associated with near and middle infrared hyperspectral images to investigate forensic cases of fraudulent documents. Microchem. J. 2017, 130, 412–419. [Google Scholar] [CrossRef]
- Khan, Z.; Shafait, F.; Mian, A. Automatic ink mismatch detection for forensic document analysis. Pattern Recognit. 2015, 48, 3615–3626. [Google Scholar] [CrossRef]
- Khan, M.J.; Yousaf, A.; Abbas, A.; Khurshid, K. Deep learning for automated forgery detection in hyperspectral document images. J. Electron. Imaging 2018, 27, 053001. [Google Scholar] [CrossRef]
- Martins, A.R.; Dourado, C.S.; Talhavini, M.; Braz, A.; Braga, J.W.B. Determination of chronological order of crossed lines of ballpoint pens by hyperspectral image in the visible region and multivariate analysis. Forensic. Sci. Int. 2019, 296, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Machidon, A.L.; del Frate, F.; Picchiani, M.; Machidon, O.M.; Ogrutan, P.L. Geometrical approximated principal component analysis for hyperspectral image analysis. Remote Sens. 2020, 12, 1698. [Google Scholar] [CrossRef]
- Su, S.; Cai, Y.; Shen, C. The banknote anti-forgery system based on digital signature algorithms. In Proceedings of the International Conference on Intelligence and Security Informatics, Taipei, Taiwan, 17–20 June 2008; pp. 44–49. [Google Scholar]
- Chia, T.H.; Levene, M.J. Detection of counterfeit US paper money using intrinsic fluorescence lifetime. Opt. Express 2009, 17, 22054–22061. [Google Scholar] [CrossRef]
- Baek, S.; Choi, E.; Baek, Y.; Lee, C. Detection of counterfeit banknotes using multispectral images. Digit. Signal Process. 2018, 78, 294–304. [Google Scholar] [CrossRef]
- Kang, K.; Lee, C. Fake banknote detection using multispectral images. In Proceedings of the 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), Chalkidiki, Greece, 13–15 July 2016; pp. 1–3. [Google Scholar]
- Correia, R.M.; Domingos, E.; Tosato, F.; Aquino, L.F.M.; Fontes, A.M.; Cao, V.M.; Filgueiras, P.R.; Romao, W. Banknote analysis by portable near infrared spectroscopy. Forensic Chem. 2018, 8, 57–63. [Google Scholar] [CrossRef]
- Vila, A.; Ferrer, N.; Mantecon, J.; Breton, D.; Garcia, J. Development of a fast and non-destructive procedure for characterizing and distinguishing original and fake euro notes. Anal. Chim. Acta 2006, 559, 257–263. [Google Scholar] [CrossRef]
- del Hoyo-Meléndez, J.M.; Gondko, K.; Mendys, A.; Król, M.; Klisiſska-Kopacz, A.; Sobczyk, J.; Jaworucka-Drath, A. A multi-technique approach for detecting and evaluating material inconsistencies in historical banknotes. Forensic Sci. Int. 2016, 266, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Lee, H.-Y. Counterfeit bill detection algorithm using deep learning. Int. J. Appl. Eng. Res 2018, 13, 304–310. [Google Scholar]
- Satish, K.; Viswanadham, Y.; Priya, I.L. Money to ATM–Fake Currency Detection. Int. J. Comput. Sci. Inform. Technol. 2012, 3, 5046–5050. [Google Scholar]
- Farid, H. Photo Forensics; MIT press: Cambridge, MA, USA, 2016. [Google Scholar]
- Malviya, A.V.; Ladhake, S.A. Pixel based image forensic technique for copy-move forgery detection using auto color correlogram. Procedia Comput. Sci. 2016, 79, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Leshem, G.; Domb, M. Face Authentication Using Image Signature Generated from Hyperspectral Inner Images. In Proceedings of the Fourth International Congress on Information and Communication Technology, London, UK, 27–28 February 2019; pp. 113–125. [Google Scholar]
- Martins, A.; Daffner, L.A.; Fenech, A.; McGlinchey, C.; Strlič, M. Non-destructive dating of fiber-based gelatin silver prints using near-infrared spectroscopy and multivariate analysis. Anal. Bioanal. Chem. 2012, 402, 1459–1469. [Google Scholar] [CrossRef]
- Picollo, M.; Cucci, C.; Casini, A.; Stefani, L. Hyper-spectral imaging technique in the cultural heritage field: New possible scenarios. Sensors 2020, 20, 2843. [Google Scholar] [CrossRef]
- Zheng, Y.; Cao, Y.; Chang, C.-H. A PUF-based data-device hash for tampered image detection and source camera identification. IEEE Trans. Inform. Forensics Secur. 2019, 15, 620–634. [Google Scholar] [CrossRef]
- Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning rich features for image manipulation detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1053–1061. [Google Scholar]
- Thakur, R.; Rohilla, R. Recent advances in digital image manipulation detection techniques: A brief review. Forensic Sci. Int. 2020, 312, 110311. [Google Scholar] [CrossRef]
- Benton, S.A. Method for Making Reduced Bandwidth Holograms. U.S. Patent 3,633,989, 1 November 1972. [Google Scholar]
- McGrew, S.P. Hologram counterfeiting: Problems and solutions. In Proceedings of the Proc. SPIE, Spokane, WA, USA, 1 April 1990; pp. 66–76. [Google Scholar]
- Dausmann, G.J.; Menz, I.; Gnaedig, K.; Yang, Z. Copy-proof machine-readable holograms for security application. In Proceedings of the Optical Security and Counterfeit Deterrence Techniques, San Jose, CA, USA, 15 March 1996; pp. 198–201. [Google Scholar]
- Huang, P.P. Holographic anticounterfeit method and device with encoded pattern. In Proceedings of the Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, San Jose, CA, USA, 1 June 1999; pp. 61–67. [Google Scholar]
- Aggarwal, A.; Kaura, S.K.; Chhachhia, D.; Sharma, A. Concealed moiré pattern encoded security holograms readable by a key hologram. Opt. Laser Technol. 2006, 38, 117–121. [Google Scholar] [CrossRef]
- Huang, W.-J.; Tsai, C.-H.; Chen, T.-J.; Kuan, M.-t.; Wen, C.-H. Development of the random-retardation-encoding anti-counterfeiting technology. In Proceedings of the Optical Security and Counterfeit Deterrence Techniques VI, San Jose, CA, USA, 9 February 2006; pp. 209–217. [Google Scholar]
- Soukup, D.; Huber-Mörk, R. Mobile hologram verification with deep learning. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 1–6. [Google Scholar]
- Ruffato, G.; Rossi, R.; Massari, M.; Mafakheri, E.; Capaldo, P.; Romanato, F. Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders. Sci. Rep. 2017, 7, 18011. [Google Scholar] [CrossRef] [PubMed]
- McGrew, S. Countermeasures against Hologram Counterfeiting. 2000. Available online: www.iea.com/nli/publications/countermeasures.htm (accessed on 13 August 2022).
- Rajput, S.K.; Kumar, D.; Nishchal, N.K. Photon counting imaging and phase mask multiplexing for multiple images authentication and digital hologram security. Appl. Opt. 2015, 54, 1657–1666. [Google Scholar] [CrossRef]
- Aginsky, V. Forensic examination of “slightly soluble” ink pigments using thin-layer chromatography. J. Forensic Sci. 1993, 38, 1131–1133. [Google Scholar] [CrossRef]
- Hardwick, B.; Jackson, W.; Wilson, G.; Mau, A.W. Advanced materials for banknote applications. Adv. Mater. 2001, 13, 980–984. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chiang, Y.-W.; Jiang, Y.-Y.; Chang, Y.-H. Development of Bill-Counterfeit Prevention Technology for Multi-Function Peripherals. In Proceedings of the IMECS, Hong Kong, 20–22 June 2006; pp. 603–608. [Google Scholar]
- Nakamura, C. The Security Printing Practices of Banknotes. Available online: https://digitalcommons.calpoly.edu/grcsp/15/ (accessed on 13 August 2022).
- Kaczmarek, A.M.; Liu, Y.Y.; Wang, C.; Laforce, B.; Vincze, L.; Van Der Voort, P.; Van Hecke, K.; van Deun, R. Lanthanide “Chameleon” Multistage Anti-Counterfeit Materials. Adv. Funct. Mater. 2017, 27, 1700258. [Google Scholar] [CrossRef]
- Bruna, A.; Farinella, G.M.; Guarnera, G.C.; Battiato, S. Forgery detection and value identification of Euro banknotes. Sensors 2013, 13, 2515–2529. [Google Scholar] [CrossRef]
- Pham, T.D.; Park, C.; Nguyen, D.T.; Batchuluun, G.; Park, K.R. Deep learning-based fake-banknote detection for the visually impaired people using visible-light images captured by smartphone cameras. IEEE Access 2020, 8, 63144–63161. [Google Scholar] [CrossRef]
- Khairy, R.S.; Hussein, A.; Alrikabi, H. The detection of counterfeit banknotes using ensemble learning techniques of AdaBoost and voting. Int. J. Intell. Eng. Syst. 2021, 14, 326–339. [Google Scholar] [CrossRef]
- Choi, W.-J.; Min, G.-H.; Lee, B.-H.; Eom, J.-H.; Kim, J.-W. Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography. J. Opt. Soc. Korea 2010, 14, 316–320. [Google Scholar] [CrossRef]
- Berenguel, A.; Terrades, O.R.; Lladós, J.; Cañero, C. Banknote counterfeit detection through background texture printing analysis. In Proceedings of the 2016 12th IAPR Workshop on Document Analysis Systems (DAS), Santorini, Greece, 11–14 April 2016; pp. 66–71. [Google Scholar]
- Jadhav, M.; kumar Sharma, Y.; Bhandari, G. Currency identification and forged banknote detection using deep learning. In Proceedings of the 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), Shegoaon, India, 27–28 December 2019; pp. 178–183. [Google Scholar]
- Park, C.; Cho, S.W.; Baek, N.R.; Choi, J.; Park, K.R. Deep feature-based three-stage detection of banknotes and coins for assisting visually impaired people. IEEE Access 2020, 8, 184598–184613. [Google Scholar] [CrossRef]
- Mohamad, N.S.; Hussin, B.; Shibghatullah, A.; Basari, A. Banknote authentication using artificial neural network. In Proceedings of the International Symposium on Research in Innovation and Sustainability, Malacca, Malaysia, 15–16 October 2014; pp. 1865–1868. [Google Scholar]
- Tessfaw, E.A.; Ramani, B.; Bahiru, T.K. Ethiopian banknote recognition and fake detection using support vector machine. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1354–1359. [Google Scholar]
- Pachón, C.G.; Ballesteros, D.M.; Renza, D. Fake banknote recognition using deep learning. Appl. Sci. 2021, 11, 1281. [Google Scholar] [CrossRef]
- Han, M.; Kim, J. Joint banknote recognition and counterfeit detection using explainable artificial intelligence. Sensors 2019, 19, 3607. [Google Scholar] [CrossRef]
- Varshney, P.K.; Arora, M.K. Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2012, 101, 652–675. [Google Scholar] [CrossRef]
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Guin, U.; Forte, D.; Tehranipoor, M. Anti-counterfeit techniques: From design to resign. In Proceedings of the 2013 14th International Workshop on Microprocessor Test and Verification, Austin, TX, USA, 11–13 December 2013; pp. 89–94. [Google Scholar]
- Chutia, D.; Bhattacharyya, D.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral remote sensing classifications: A perspective survey. Trans. GIS 2016, 20, 463–490. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Plaza, A.; Li, J.; Xiao, F.; Wei, Z. Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2270–2278. [Google Scholar] [CrossRef]
- Khan, M.J.; Khurshid, K.; Shafait, F. A spatio-spectral hybrid convolutional architecture for hyperspectral document authentication. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019; pp. 1097–1102. [Google Scholar]
- Islam, A.U.; Khan, M.J.; Asad, M.; Khan, H.A.; Khurshid, K. iVision HHID: Handwritten hyperspectral images dataset for benchmarking hyperspectral imaging-based document forensic analysis. Data Brief 2022, 41, 107964. [Google Scholar] [CrossRef]
- Islam, A.U.; Khan, M.J.; Khurshid, K.; Shafait, F. Hyperspectral image analysis for writer identification using deep learning. In Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, WA, Australia, 2–4 December 2019; pp. 1–7. [Google Scholar]
Authors | Year | Dataset | Range (Acquisition) | Methods (Processing) | Accuracy |
---|---|---|---|---|---|
Polak et al. | 2017 | Own dataset | MIR (Firefly IR) | PCA, SVM | 67% |
NIR (Red Eye 1.7) | PCA, SVM | 78% | |||
Casini et al. | 2015 | Own dataset | VNIR | Customized Software | N/A |
Daniel et al. | 2016 | CNR-IFAC open-access on-line database of reflectance spectra | VNIR | SAM | N/A |
Deborah et al. | 2015 | Own dataset | HSI-ALL | DM | N/A |
Marg. | N/A | ||||
SCMM | N/A | ||||
Wang et al. | 2016 | Own dataset | VNIR | SSA (Spectral-Only) | 80.6% |
PCA (Spatial-Only) | 72.5% | ||||
Combination | 84.6% | ||||
CNN (Spatial-Only) | 58.4% | ||||
Grabowski et al. | 2017 | Own dataset | SWIR (Tempera canvas) | Own Algorithm | 91.16% |
SWIR (Tempera paper) | Own Algorithm | 89.76% | |||
SWIR (Oil canvas) | Own Algorithm | 62.83% | |||
SWIR (Oil paper) | Own Algorithm | 79.36% |
Authors | Year | Dataset | Range (Acquisition) | Methods (Processing) | Accuracy |
---|---|---|---|---|---|
Silva et al. | 2014 | Own dataset | NIR | PCA, MCR-ALS (Obliterating) | 42% |
PCA, MCR-ALS (Adding) | 82% | ||||
MCR-ALS, PLS-DA (Crossing) | 85% | ||||
Pereira et al. | 2016 | Own dataset | MIR | PP PCA | 97.5% 87.5% |
NIR | PP PCA | 83.3% 76.7% | |||
Combination | 90% | ||||
Khan et al. | 2015 | UWA Writing Ink Hyperspectral Image Database | JSBS | JSPCA (Blue ink) | 86.7% |
JSPCA (Black ink) | 89% | ||||
VIS | JSPCA (Blue ink) | 75.4% | |||
JSPCA (Black ink) | 74.7% | ||||
Khan et al. (2) | 2018 | UWA Writing Ink Hyperspectral Image Database | VIS | CNN (Blue ink) | 98.2% |
CNN (Black ink) | 88% | ||||
Luo et al. | 2015 | UWA Writing Ink Hyperspectral Image Database | VIS | Own Algorithm (Blue ink) | 89.0% |
Own Algorithm (Black ink) | 82.3% | ||||
A. R. Martins et al. | 2019 | Own dataset | VNIR | UA, MCR-ALS | 63% |
Authors | Year | Dataset | Range (Acquisition) | Methods (Processing) | Accuracy |
---|---|---|---|---|---|
Baek et al. | 2018 | Own dataset | VNIR | PCA, SVM | 99.89% |
VIS, IR | Own Algorithm | 98.66% | |||
Kang et al. | 2016 | Own dataset | VIS, IR | Own Algorithm | 99.97% |
Correia et al. | 2018 | Own dataset | NIR | PCA, PLS-DA | 100% |
Vila et al. | 2006 | Own dataset | IR | PCA | N/A |
Lim et al. | 2017 | Own dataset | NIR | Own Algorithm | N/A |
Hoyo-Meléndez et al. | 2016 | Own dataset | VNIR | Envi 5.0 | N/A |
Authors | Year | Dataset | Range (Acquisition) | Methods (Processing) | Accuracy |
---|---|---|---|---|---|
Tournié et al. | 2016 | Own dataset | SWIR | LDA, PCA (Agfa) | 86% |
LDA, PCA (Fuji) | 96.3% | ||||
LDA, PCA (Kodak) | 82.5% | ||||
Leshem et al. | 2020 | Own dataset | N/A | N/A | N/A |
A. Martins et al. | 2011 | Own dataset | NIR | PCA, PLS-DA | N/A |
Picollo et al. | 2020 | Dainelli archive | VNIR | UMAP | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-Y.; Mukundan, A.; Tsao, Y.-M.; Kim, Y.; Lin, F.-C.; Wang, H.-C. Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging. Sensors 2022, 22, 7308. https://doi.org/10.3390/s22197308
Huang S-Y, Mukundan A, Tsao Y-M, Kim Y, Lin F-C, Wang H-C. Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging. Sensors. 2022; 22(19):7308. https://doi.org/10.3390/s22197308
Chicago/Turabian StyleHuang, Shuan-Yu, Arvind Mukundan, Yu-Ming Tsao, Youngjo Kim, Fen-Chi Lin, and Hsiang-Chen Wang. 2022. "Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging" Sensors 22, no. 19: 7308. https://doi.org/10.3390/s22197308
APA StyleHuang, S.-Y., Mukundan, A., Tsao, Y.-M., Kim, Y., Lin, F.-C., & Wang, H.-C. (2022). Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging. Sensors, 22(19), 7308. https://doi.org/10.3390/s22197308