Performance Analysis of State-of-the-Art CNN Architectures for LUNA16
<p>Convolutional neural network architecture.</p> "> Figure 2
<p>Performance evaluation with statistical parameters for LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1 (training accuracy).</p> "> Figure 3
<p>Performance evaluation with statistical parameters for LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1 (validation accuracy).</p> ">
Abstract
:1. Introduction
2. Related Work
- (a)
- The main contribution of this study is to provide a performance-oriented analysis by combining deep learning algorithms with different optimizers for the classification of lung cancer.
- (b)
- We have implemented CNN architectures with Adam, SGD, and RMSprop optimizers on the LUNA16 publicly available dataset.
- (c)
- It was observed that the AlexNet architecture with the SGD optimizer achieved the best results on the LUNA16 dataset.
- (d)
- Finally, AlexNet with the SGD optimizer approach achieved the highest accuracy as compared with other existing techniques for lung cancer classification.
3. Materials and Methods
4. Results and Discussion
5. Conclusions
6. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, T.F. Handbook of Approximation Algorithms and Metaheuristics; Chapman & Hall/CRC: New York, NY, USA, 2007; pp. 1–1432. [Google Scholar] [CrossRef]
- Christie, J.R.; Lang, P.; Zelko, L.M.; Palma, D.A.; Abdelrazek, M.; Mattonen, S.A. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can. Assoc. Radiol. J. 2021, 72, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Munir, K.; Frezza, F.; Rizzi, A. Deep Learning for Brain Tumor Segmentation. Stud. Comput. Intell. 2021, 908, 189–201. [Google Scholar] [CrossRef]
- Rajaraman, S.; Ganesan, P.; Antani, S. Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks. PLoS ONE 2022, 17, e0262838. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, D.M.; Rong, R.; Zhan, X.; Fujimoto, J.; Liu, H.; Minna, J.; Wistuba, I.I.; Xie, Y.; Xiao, G. Artificial intelligence in lung cancer pathology image analysis. Cancers 2019, 11, 1673. [Google Scholar] [CrossRef]
- Melekoodappattu, J.G.; Dhas, A.S.; Kandathil, B.K.; Adarsh, K.S. Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. J. Ambient Intell. Humaniz. Comput. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Z.; Yang, Y. Recent progress in semantic image segmentation. Artif. Intell. Rev. 2019, 52, 1089–1106. [Google Scholar] [CrossRef]
- Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb. Perspect. Med. 2021, 11, a039537. [Google Scholar] [CrossRef]
- Santos, M.; Rocha, N.P. Medical Imaging Repository Contributions for Radiation Protection Key Performance Indicators. Procedia Comput. Sci. 2021, 196, 590–597. [Google Scholar] [CrossRef]
- Abel, M.F.; Sutherland, D.H.; Wenger, D.R.; Mubarak, S.J. Evaluation of ct scans and 3-D reformatted images for quantitative assessment of the hip. J. Pediatr. Orthop. 1994, 14, 48–53. [Google Scholar] [CrossRef]
- Siddiqui, S.Y.; Abbas, S.; Khan, M.A.; Naseer, I.; Masood, T.; Khan, K.M.; Al Ghamdi, M.A.; Almotiri, S.H. Intelligent decision support system for COVID-19 empowered with deep learning. Comput. Mater. Contin. 2020, 66, 1719–1732. [Google Scholar] [CrossRef]
- Leleu, O.; Basille, D.; Auquier, M.; Clarot, C.; Hoguet, E.; Baud, M.; Lenel, S.; Milleron, B.; Berna, P.; Jounieaux, V. Results of Second Round Lung Cancer Screening by Low-Dose CT scan—French Cohort Study (DEP-KP80). Clin. Lung Cancer 2022, 23, e54–e59. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, A.; Prabhu, G.A.; Rajinikanth, V.; Thanaraj, K.P.; Thanaraj, K.P.; Satapathy, S.C.; Robbins, D.E.; Shasky, C.; Zhang, Y.-D.; Tavares, J.M.R.S.; et al. Deep-learning framework to detect lung abnormality—A study with chest X-ray and lung CT scan images. Pattern Recognit. Lett. 2020, 129, 271–278. [Google Scholar] [CrossRef]
- Gupta, P.; Shukla, A.P. Improving Accuracy of Lung Nodule Classification Using AlexNet Model. In Proceedings of the 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 24–25 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Shimazaki, A.; Ueda, D.; Choppin, A.; Yamamoto, A.; Honjo, T.; Shimahara, Y.; Miki, Y. Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.-L.; Wu, B.-T.; Tang, W.; Zhou, L.-N.; Huang, Y.; Zhao, S.-J.; Li, M.; Zhang, L.; Feng, S.-C.; Hou, D.-H.; et al. Long-term follow-up of persistent pulmonary pure ground-glass nodules with deep learning–assisted nodule segmentation. Eur. Radiol. 2020, 30, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Khehrah, N.; Farid, M.S.; Bilal, S.; Khan, M.H. Lung Nodule Detection in CT Images Using Statistical and Shape-Based Features. J. Imaging 2020, 6, 6. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Xia, Y.; Fulham, M.; Zhang, Y. Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inf. Fusion 2018, 42, 102–110. [Google Scholar] [CrossRef]
- Nasser, I.M.; Abu-Naser, S.S. Lung Cancer Detection Using Artificial Neural Network. Int. J. Eng. Inf. Syst. 2019, 3, 17–23. Available online: www.ijeais.org (accessed on 8 May 2022).
- Miah, M.B.A.; Yousuf, M.A. Detection of lung cancer from CT image using image processing and neural network. In Proceedings of the 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Savar, Bangladesh, 21–23 May 2015. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten Digit Recognition with a Back-Propagation Network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404. [Google Scholar]
- Zhang, S.; Sun, F.; Wang, N.; Zhang, C.; Yu, Q.; Zhang, M.; Babyn, P.; Zhong, H. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. J. Digit. Imaging 2019, 32, 995–1007. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, L.; Qi, S.; Teng, Y.; Li, J.; Qian, W. Agile convolutional neural network for pulmonary nodule classification using CT images. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 585–595. [Google Scholar] [CrossRef]
- Krizhevsky, B.A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Processing Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Agarwal, A.; Patni, K.; Rajeswari, D. Lung Cancer Detection and Classification Based on Alexnet CNN. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021; pp. 1390–1397. [Google Scholar] [CrossRef]
- Polat, H.; Mehr, H.D. Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture. Appl. Sci. 2019, 9, 940. [Google Scholar] [CrossRef]
- Rao, P.; Fereira, N.A.; Srinivasan, R. Convolutional neural networks for lung cancer screening in computed tomography (CT) scans. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 489–493. [Google Scholar] [CrossRef]
- Lin, C.J.; Li, Y.C. Lung nodule classification using taguchi-based convolutional neural networks for computer tomography images. Electronics 2020, 9, 1066. [Google Scholar] [CrossRef]
- Al-Yasriy, H.F.; Al-Husieny, M.S.; Mohsen, F.Y.; Khalil, E.A.; Hassan, Z.S. Diagnosis of Lung Cancer Based on CT Scans Using CNN. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022035. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Elnakib, A.; Amer, H.M.; Abou-Chadi, F.E.Z. Early lung cancer detection using deep learning optimization. Int. J. Online Biomed. Eng. 2020, 16, 82–94. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, S.; Tong, J.; Xiao, Z. Lung segmentation method with dilated convolution based on VGG-16 network. Comput. Assist. Surg. 2019, 24 (Suppl. 2), 27–33. [Google Scholar] [CrossRef]
- Pang, S.; Meng, F.; Wang, X.; Wang, J.; Song, T.; Wang, X.; Cheng, X. VGG16-T: A novel deep convolutional neural network with boosting to identify pathological type of lung cancer in early stage by ct images. Int. J. Comput. Intell. Syst. 2020, 13, 771–780. [Google Scholar] [CrossRef]
- Sajja, T.K.; Devarapalli, R.M.; Kalluri, H.K. Lung cancer detection based on CT scan images by using deep transfer learning. Trait. Signal 2019, 36, 339–344. [Google Scholar] [CrossRef]
- Nibali, A.; He, Z.; Wollersheim, D. Pulmonary nodule classification with deep residual networks. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1799–1808. [Google Scholar] [CrossRef]
- Zheng, G.; Han, G.; Soomro, N.Q. An Inception Module CNN Classifiers Fusion Method on Pulmonary Nodule Diagnosis by Signs. Tsinghua Sci. Technol. 2019, 25, 368–383. [Google Scholar] [CrossRef]
- Haibo, L.; Shanli, T.; Shuang, S.; Haoran, L. An improved yolov3 algorithm for pulmonary nodule detection. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; pp. 1068–1072. [Google Scholar]
- Zhang, X.; Lee, V.C.S.; Rong, J.; Liu, F.; Kong, H. Multi-channel convolutional neural network architectures for thyroid cancer detection. PLoS ONE 2022, 17, e0262128. [Google Scholar] [CrossRef] [PubMed]
- Leo, M.; Cacagnì, P.; Signore, L.; Benincasa, G.; Laukkanen, M.O.; Distante, C. Improving Colon Carcinoma Grading by Advanced CNN Models. In International Conference on Image Analysis and Processing; Springer: Cham, Switzerland, 2022; pp. 233–244. [Google Scholar] [CrossRef]
- Siddiqui, S.Y.; Naseer, I.; Khan, M.A.; Mushtaq, M.F.; Naqvi, R.A.; Hussain, D.; Haider, A. Intelligent breast cancer prediction empowered with fusion and deep learning. Comput. Mater. Contin. 2021, 67, 1033–1049. [Google Scholar] [CrossRef]
- Siddiqui, S.Y.; Haider, A.; Ghazal, T.M.; Khan, M.A.; Naseer, I.; Abbas, S.; Rahman, M.; Khan, J.A.; Ahmad, M.; Hasan, M.K.; et al. IoMT Cloud-Based Intelligent Prediction of Breast Cancer Stages Empowered with Deep Learning. IEEE Access 2021, 9, 146478–146491. [Google Scholar] [CrossRef]
- Carcagnì, P.; Leo, M.; Celeste, G.; Distante, C.; Cuna, A. A systematic investigation on deep architectures for automatic skin lesions classification. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 8639–8646. [Google Scholar] [CrossRef]
- Zhang, N.; Cai, Y.X.; Wang, Y.Y.; Tian, Y.T.; Wang, X.L.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural network. Artif. Intell. Med. 2020, 102, 101756. [Google Scholar] [CrossRef] [PubMed]
- Setio, A.A.A.; Traverso, A.; de Bel, T.; Berens, M.S.N.; van den Bogaard, C.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [Google Scholar] [CrossRef]
- Kazerooni, E.A.; Austin, J.H.M.; Black, W.C.; Dyer, D.S.; Hazelton, T.R.; Leung, A.N.; McNitt-Gray, M.F.; Munden, R.F.; Pipavath, S. ACR-STR practice parameter for the performance and reporting of lung cancer screening thoracic computed tomography (CT): 2014 (Resolution 4). J. Thorac. Imaging 2014, 29, 310–316. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y. Design on Intelligent Feature Graphics Based on Convolution Operation. Mathematics 2022, 10, 384. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Lou, X.; Fan, C.; Geng, Z. Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient. Appl. Energy 2022, 309, 118409. [Google Scholar] [CrossRef]
- Mao, Q.; Zhao, S.; Ren, L.; Li, Z.; Tong, D.; Yuan, X.; Li, H. Intelligent immune clonal optimization algorithm for pulmonary nodule classification. Math. Biosci. Eng. 2021, 18, 4146–4161. [Google Scholar] [CrossRef]
- Gao, Y.; Song, F.; Zhang, P.; Liu, J.; Cui, J.; Ma, Y.; Zhang, G.; Luo, J. Improving the Subtype Classification of Non-small Cell Lung Cancer by Elastic Deformation Based Machine Learning. J. Digit. Imaging 2021, 34, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.D.; Nguyen, T.T.; Le, T.H. Detection of lung nodules on ct images based on the convolutional neural network with attention mechanism. Ann. Emerg. Technol. Comput. 2021, 5, 77–89. [Google Scholar] [CrossRef]
- Silva, F.; Pereira, T.; Neves, I.; Morgado, J.; Freitas, C.; Malafaia, M.; Sousa, J.; Fonseca, J.; Negrao, E.; de Lima, B.F.; et al. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J. Pers. Med. 2022, 12(3), 480. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, K.; Chawla, P. Medical Internet of things using machine learning algorithms for lung cancer detection. J. Manag. Anal. 2020, 7, 591–623. [Google Scholar] [CrossRef]
- Bansal, G.; Chamola, V.; Narang, P.; Kumar, S.; Raman, S. Deep3DScan: Deep residual network and morphological descriptor based framework for lung cancer classification and 3D segmentation. IET Image Process. 2020, 14, 1316–1326. [Google Scholar] [CrossRef]
Publications | Method | Dataset | Accuracy% | Weakness |
---|---|---|---|---|
Khehrah et al. [17] | ANN | LIDC-IDRI | 92.0% | Requires handcrafted features |
Xie et al. [18] | ANN | LIDC-IDRI | 89.62% | Requires handcrafted features |
Naseer et al. [19] | ANN | Private Lung Dataset | 96.67% | Requires handcrafted features |
[20] | ANN | Private Lung Dataset | 96.67% | Requires handcrafted features |
S. Zhang et al. [22] | LeNet-5 10 fold Cross-Validation | LIDC-IDRI | 97.04% | Complexity required |
Zhao et al. [23] | hybrid CNN of LeNet and AlexNet is | LIDC-IDRI | 87.7% | Complexity required |
Agarwal et al. [25] | AlexNet CNN | Private Lung Dataset | 96.0% | Less number images |
Polat et al. [26] | Hybrid 3D-CNN RBF-based | LUNA16 Lungs Data Science Bowl | 91.81% | Complexity required |
Al-Yasriy et al. [29] | AlexNet CNN | (IQ-OTH/NCCD) lung cancer dataset | 93.548% | Use of imbalance dataset |
A. Elnakib et al. [31] | VGG19 architecture and SVM classifier | Early Lung Cancer Action Project (ELCAP) database | 96.25% | Less number images |
Nibali et al. [35] | ResNet-18 architecture | LIDC-IDRI | 89.90% | Needs to improve accuracy |
Zheng et al. [36] | Inception CNN classifier | AIA-INF | 88.67% | Needs to improve accuracy |
Haibo et al. [27] | DarkNet-53 CNN architecture | LUNA16 | 73.9% | Needs to improve accuracy |
CNN Architecture | Optimizer | True Negative | False Positive | False Negative | True Positive |
---|---|---|---|---|---|
LeNet | RMSprop | 204 | 14 | 9 | 239 |
LeNet | Adam | 211 | 7 | 15 | 233 |
LeNet | SGD | 212 | 6 | 13 | 235 |
CNN Architecture | Accuracy | Sensitivity | Specificity | PPV | NPV | FOR | F1-Score |
---|---|---|---|---|---|---|---|
LeNet RMSprop | 95.06% | 96.37% | 93.58% | 94.47% | 95.77% | 4.23% | 95.41% |
LeNet Adam | 95.18% | 93.7% | 96.79% | 96.96% | 93.36% | 6.63% | 95.3% |
LeNet SGD | 95.92% | 94.76% | 97.25% | 97.51% | 94.22% | 5.78% | 96.11% |
CNN Architecture | Optimizer | True Negative | False Positive | False Negative | True Positive |
---|---|---|---|---|---|
AlexNet | RMSprop | 206 | 12 | 10 | 238 |
AlexNet | Adam | 205 | 13 | 7 | 241 |
AlexNet | SGD | 212 | 6 | 6 | 242 |
CNN Architecture | Accuracy | Sensitivity | Specificity | PPV | NPV | FOR | F1-Score |
---|---|---|---|---|---|---|---|
AlexNet RMSprop | 95.28% | 95.97% | 94.5% | 95.20% | 95.37% | 4.63% | 95.58% |
AlexNet Adam | 95.71% | 97.18% | 94.04% | 94.88% | 96.70% | 3.30% | 96.02% |
AlexNet SGD | 97.42% | 97.58% | 97.25% | 97.58% | 97.25% | 2.75% | 97.58% |
CNN Architecture | Optimizer | True Negative | False Positive | False Negative | True Positive |
---|---|---|---|---|---|
VGG16 | RMSprop | 204 | 14 | 21 | 227 |
VGG16 | Adam | 203 | 15 | 19 | 229 |
VGG16 | SGD | 209 | 9 | 21 | 227 |
CNN Architecture | Accuracy | Sensitivity | Specificity | PPV | NPV | FOR | F1-Score |
---|---|---|---|---|---|---|---|
VGG16 RMSprop | 92.49% | 91.53% | 93.58% | 94.19% | 90.67% | 9.33% | 92.84% |
VGG16 Adam | 92.70% | 92.34% | 93.12% | 93.85% | 91.44% | 8.56% | 93.09% |
VGG16 SGD | 93.56% | 91.53% | 95.87% | 96.19% | 90.87% | 9.13% | 93.80% |
CNN Architecture | Optimizer | True Negative | False Positive | False Negative | True Positive |
---|---|---|---|---|---|
ResNet 50 | RMSprop | 207 | 11 | 18 | 230 |
ResNet 50 | Adam | 211 | 7 | 16 | 234 |
ResNet 50 | SGD | 212 | 6 | 11 | 237 |
CNN Architecture | Accuracy | Sensitivity | Specificity | PPV | NPV | FOR | F1-Score |
---|---|---|---|---|---|---|---|
ResNet 50 RMSprop | 93.78% | 92.74% | 94.95% | 95.44% | 92.0% | 8.0% | 94.07% |
ResNet 50 Adam | 95.09% | 93.60% | 96.79% | 97.10% | 92.95% | 7.04% | 95.32% |
ResNet 50 SGD | 96.35% | 95.56% | 97.25% | 97.53% | 95.07% | 4.93% | 96.54% |
CNN Architecture | Optimizer | True Negative | False Positive | False Negative | True Positive |
---|---|---|---|---|---|
Inception-V1 | RMSprop | 206 | 12 | 28 | 220 |
Inception-V1 | Adam | 210 | 8 | 20 | 228 |
Inception-V1 | SGD | 211 | 7 | 16 | 232 |
CNN Architecture | Accuracy | Sensitivity | Specificity | PPV | NPV | FOR | F1-Score |
---|---|---|---|---|---|---|---|
Inception-V1 RMSprop | 91.42% | 88.71% | 94.50% | 94.83% | 88.03% | 11.97% | 91.67% |
Inception-V1 Adam | 93.99% | 91.94% | 96.33% | 96.61% | 91.30% | 8.70% | 94.21% |
Inception-V1 SGD | 95.06% | 93.55% | 96.79% | 97.07% | 92.95% | 7.05% | 95.28% |
Detection Class | |||
---|---|---|---|
Benign | Malignant | ||
Actual Class | Benign | | |
Malignant | | |
CNN Architecture | Accuracy | Sensitivity | Specificity | PPV | NPV | FOR | F1-Score |
---|---|---|---|---|---|---|---|
LeNet SGD | 93.56% | 92.74% | 94.50% | 95.04% | 91.96% | 8.045% | 93.88% |
AlexNET SGD | 95.73% | 95.20% | 96.33% | 96.75% | 94.59% | 5.41% | 95.97% |
VGG16 SGD | 93.56% | 89.92% | 97.71% | 97.81% | 89.50% | 10.50% | 93.70% |
ResNet-50 SGD | 95.28% | 96.77% | 93.58% | 94.49% | 96.23% | 3.77% | 95.62% |
Inception-V1 SGD | 91.85% | 87.1% | 97.25% | 97.30% | 86.89% | 13.11% | 91.91% |
Publications | Method | Dataset | Accuracy% | Misclassification Rate |
---|---|---|---|---|
Khehrah et al. [17] | ANN | LIDC-IDRI | 92.0% | 8.0% |
Xie et al. [18] | ANN | LIDC-IDRI | 89.62% | 10.38% |
Naseer et al. [19] | ANN | Private Lung Dataset | 96.67% | 3.33% |
[20] | ANN | Private Lung Dataset | 96.67% | 3.33% |
S. Zhang et al. [22] | LeNet-5 10-fold Cross-Validation | LIDC-IDRI | 97.04% | 2.96% |
Zhao et al. [23] | Hybrid CNN of LeNet and AlexNet | LIDC-IDRI | 87.7% | 12.3% |
Agarwal et al. [25] | AlexNet CNN | Private Lung Dataset | 96.0% | 4.0% |
Polat et al. [26] | Hybrid 3D-CNN RBF-based | LUNA16 Lungs Data Science Bowl | 91.81% | 8.19% |
Al-Yasriy et al. [29] | AlexNet CNN | (IQ-OTH/NCCD) Lung Cancer Dataset | 93.548% | 6.45% |
A. Elnakib et al. [31] | VGG19 architecture and SVM classifier | Early Lung Cancer Action Project (ELCAP) Database | 96.25% | 3.75% |
Nibali et al. [35] | ResNet-18 architecture | LIDC-IDRI | 89.90% | 10.1% |
Zheng et al. [36] | Inception CNN classifier | AIA-INF | 88.67% | 11.33% |
Haibo et al. [37] | DarkNet-53 CNN architecture | LUNA16 | 73.9% | 26.1% |
Best Model: AlexNet SGD with 5-fold Cross-Validation | AlexNet with SGD | LUNA16 | 95.73% | 4.27% |
Best Model: AlexNet with SGD | AlexNet with SGD | LUNA16 | 97.42% | 2.58% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseer, I.; Akram, S.; Masood, T.; Jaffar, A.; Khan, M.A.; Mosavi, A. Performance Analysis of State-of-the-Art CNN Architectures for LUNA16. Sensors 2022, 22, 4426. https://doi.org/10.3390/s22124426
Naseer I, Akram S, Masood T, Jaffar A, Khan MA, Mosavi A. Performance Analysis of State-of-the-Art CNN Architectures for LUNA16. Sensors. 2022; 22(12):4426. https://doi.org/10.3390/s22124426
Chicago/Turabian StyleNaseer, Iftikhar, Sheeraz Akram, Tehreem Masood, Arfan Jaffar, Muhammad Adnan Khan, and Amir Mosavi. 2022. "Performance Analysis of State-of-the-Art CNN Architectures for LUNA16" Sensors 22, no. 12: 4426. https://doi.org/10.3390/s22124426
APA StyleNaseer, I., Akram, S., Masood, T., Jaffar, A., Khan, M. A., & Mosavi, A. (2022). Performance Analysis of State-of-the-Art CNN Architectures for LUNA16. Sensors, 22(12), 4426. https://doi.org/10.3390/s22124426