A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data
<p>Experimental method and results. (<b>a</b>) Plantar pressure measurement, (<b>b</b>) numerical pressure data, (<b>c</b>) distribution of pressure image data.</p> "> Figure 2
<p>Arch index calculation method.</p> "> Figure 3
<p>Labeled results and histogram of arch index data. (<b>a</b>) Arch index method and labeled image data, (<b>b</b>) Distribution of the data.</p> "> Figure 4
<p>Image data pre-processing.</p> "> Figure 5
<p>Image positioning method.</p> "> Figure 6
<p>Definition of rotation angle.</p> "> Figure 7
<p>Steps in generating toe-less image.</p> "> Figure 8
<p>Data augmentation method.</p> "> Figure 9
<p>Correlation analysis results for features and arch index.</p> "> Figure 10
<p>Scheme showing the proposed stacking ensemble model.</p> "> Figure 11
<p>Results of learning models.</p> ">
Abstract
:1. Introduction
2. Data Preparation
2.1. Data Acquisition
2.2. Calculation of Arch Index (Labeling)
2.3. Pre-Processing of Image Data (Distribution of Pressure)
2.4. Pre-Processing of Numerical Data (Pressure Value)
3. Network Methodology
3.1. Image Data Learning Based on Transfer Learning
3.1.1. Algorithm of Image Data Learning Model
3.1.2. Fine-Tuning Strategy for Ensemble Models
3.2. Numerical Data Learning Based on Features
3.3. Stacking Ensemble with Cross-Validation
3.4. Evaluation Method and Hardware for Learning Model
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michaud, T.C. Human Locomotion: The Conservative Management of Gait-Related Disorders, 1st ed.; Netwon Biomechanics: Newton, MA, USA, 2011. [Google Scholar]
- Menz, H.B.; Dufour, A.B.; Riskowski, J.L.; Hillstrom, H.J.; Hannan, M.T. Association of planus foot posture and pronated foot function with foot pain: The Framingham foot study. Arthritis Rheum. 2013, 65, 1991–1999. [Google Scholar] [CrossRef] [Green Version]
- Iii, D.S.W.; McClay, I.S.; Hamill, J. Arch structure and injury patterns in runners. Clin. Biomech. 2001, 16, 341–347. [Google Scholar]
- Williams, D.S.; McClay, I.S.; Hamill, J.; Buchanan, T.S. Lower extremity kinematic and kinetic differences in runners with high and low arches. J. Appl. Biomech. 2001, 17, 153–163. [Google Scholar] [CrossRef]
- Zuil-Escobar, J.C.; Martínez-Cepa, C.B.; Martín-Urrialde, J.A.; Gómez-Conesa, A. Medial longitudinal arch: Accuracy, reliability, and correlation between navicular drop test and footprint parameters. J. Manip. Physiol. Ther. 2018, 41, 672–679. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Rodgers, M.M. The arch index: A useful measure from footprints. J. Biomech. 1987, 20, 547–551. [Google Scholar] [CrossRef]
- Xiong, S.; Goonetilleke, R.S.; Witana, C.P.; Weerasinghe, T.W.; Au, E.Y.L. Foot arch characterization: A review, a new metric, and a comparison. J. Am. Podiatr. Med. Assoc. 2010, 100, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.S.; McClay, I.S. Measurements used to characterize the foot and the medial longitudinal arch: Reliability and validity. Phys. Ther. 2000, 80, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.C.; Lee, S.H.; Chu, W.; Wang, T.J.; Lee, M.C. The use of arch index to characterize arch height: A digital image processing approach. IEEE Trans. Biomed. Eng. 1995, 42, 1088–1093. [Google Scholar]
- Menz, H.B.; Munteanu, S.E. Validity of 3 clinical techniques for the measurement of static foot posture in older people. J. Orthop. Sports Phys. Ther. 2005, 35, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Menz, H.B.; Fotoohabadi, M.R.; Wee, E.; Spink, M.J. Visual categorisation of the arch index: A simplified measure of foot posture in older people. J. Foot Ankle Res. 2012, 5, 1–7. [Google Scholar] [CrossRef]
- Roy, H.; Bhattacharya, K.; Deb, S.; Ray, K. Arch index: An easier approach for arch height (a regression analysis). Al Ameen J. Med Sci. 2012, 5, 137–146. [Google Scholar]
- Abdul Razak, A.H.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulkifli, S.S.; Loh, W.P. A state-of-the-art review of foot pressure. Foot Ankle Surg. 2020, 26, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Urry, S.R.; Wearing, S.C. A comparison of footprint indexes calculated from ink and electronic footprints. J. Am. Podiatr. Med. Assoc. 2001, 91, 203–209. [Google Scholar] [CrossRef]
- Shiang, T.Y.; Lee, S.H.; Lee, S.J.; Chu, W.C. Evaluating different footprints parameters as a predictor of arch height. IEEE Eng. Med. Biol. Mag. 1998, 17, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Toth-Tascau, M.; Vigaru, C.; Pasca, O.; Stoia, D.I.; Balanean, F. Comparison of Plantar Arch Index Calculated from Ink and Electronic Footprints. Key Eng. Mater. 2013, 583, 125–128. [Google Scholar] [CrossRef]
- Yalcin, N.; Esen, E.; Kanatli, U.; Yetkin, H. Evaluation of the medial longitudinal arch: A comparison between the dynamic plantar pressure measurement system and radiographic analysis. Acta Orthop. Traumatol. Turc. 2010, 44, 241–245. [Google Scholar] [CrossRef]
- Song, K.D.; Kim, M.; Do, S. The latest trends in the use of deep learning in radiology illustrated through the stages of deep learning algorithm development. J. Korean Soc. Radiol. 2019, 80, 202–212. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Kim, R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Xie, Q.; Faust, K.; Van Ommeren, R.; Sheikh, A.; Djuric, U.; Diamandis, P. Deep learning for image analysis: Personalizing medicine closer to the point of care. Crit. Rev. Clin. Lab. Sci. 2019, 56, 61–73. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Z.; Chen, F.; Zhang, S.; Peng, C. Research on feature extraction algorithm for plantar pressure image and gait analysis in stroke patients. J. Vis. Commun. Image Represent. 2019, 58, 525–531. [Google Scholar] [CrossRef]
- Li, Z.; Dey, N.; Ashour, A.S.; Cao, L.; Wang, Y.; Wang, D.; Shi, F. Convolutional neural network based clustering and manifold learning method for diabetic plantar pressure imaging dataset. J. Med. Imaging Health Inform. 2017, 7, 639–652. [Google Scholar] [CrossRef]
- Murdoch, T.B.; Detsky, A.S. The inevitable application of big data to health care. JAMA 2013, 309, 1351–1352. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, H.S.; Kim, J.J. Analysis of Pediatric Foot Disorders Using Decision Tree and Neural Networks. In Proceedings of the 2017 European Conference on Electrical Engineering and Computer Science (EECS), Bern, Switzerland, 17–19 November 2017; pp. 41–46. [Google Scholar]
- Aswal, S.; Ahuja, N.J. Experimental analysis of traditional classification algorithms on bio medical datasets. In Proceedings of the 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 14–16 October 2016; pp. 566–568. [Google Scholar]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mansour, R.F. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed. Eng. Lett. 2018, 8, 41–57. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Cheng, Q.; Nankabirwa, N.L.; Zhang, T. Single 2D pressure footprint based person identification. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 413–419. [Google Scholar]
- Wang, C.; Li, D.; Li, Z.; Wang, D.; Dey, N.; Biswas, A.; Shi, F. An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks. Optik 2019, 185, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Abuqadumah, M.M.; Ali, M.A.; Abd Almisreb, A.; Durakovic, B. Deep transfer learning for human identification based on footprint: A comparative study. Period. Eng. Nat. Sci. 2019, 7, 1300–1307. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.P.; Sousa, A.; Santos, R.; Tavares, J.M.R. Towards an efficient and robust foot classification from pedobarographic images. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Pal, K.K.; Sudeep, K.S. Preprocessing for image classification by convolutional neural networks. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; pp. 1778–1781. [Google Scholar]
- Fernández-Seguín, L.M.; Mancha, J.A.D.; Rodríguez, R.S.; Martínez, E.E.; Martín, B.G.; Ortega, J.R. Comparison of plantar pressures and contact area between normal and cavus foot. Gait Posture 2014, 39, 789–792. [Google Scholar] [CrossRef]
- Chang, H.W.; Chieh, H.F.; Lin, C.J.; Su, F.C.; Tsai, M.J. The relationships between foot arch volumes and dynamic plantar pressure during midstance of walking in preschool children. PLoS ONE 2014, 9, e94535. [Google Scholar] [CrossRef] [Green Version]
- Jonely, H.; Brismée, J.M.; Sizer, P.S., Jr.; James, C.R. Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking. Clin. Biomech. 2011, 26, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Mihai, A.U.R.A.; Pastina, M.A.R.I.A.N.A. Classification of foot types, based on plantar footprint. In Proceedings of the 4th International Conference on Advanced Materials and Systems, Bucharest, Romania; 2012; Volume 12. [Google Scholar]
- Lipton, Z.C.; Elkan, C.; Naryanaswamy, B. Optimal thresholding of classifiers to maximize F1 measure. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Berlin, Heidelberg, Germany; 2014; pp. 225–239. [Google Scholar]
- Olivas, E.S.; Guerrero, J.D.; Martinez-Sober, M.; Magdalena-Benedito, J.R.; Serrano, L. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, 1st ed.; IGI Global: Hershey, PA, USA, 2009; pp. 242–264. [Google Scholar]
- Kensert, A.; Harrison, P.J.; Spjuth, O. Transfer learning with deep convolutional neural networks for classifying cellular morphological changes. Slas Discov. Adv. Life Sci. R D 2019, 24, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanni, L.; Ghidoni, S.; Brahnam, S. Ensemble of convolutional neural networks for bioimage classification. Applied Computing and Informatics. 2018. Available online: http://creativecommons.org/licenses/by-nc-nd/4.0/ (accessed on 21 March 2020).
- Li, Z.; Hoiem, D. Learning without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Keras Documentation. Available online: https://keras.io/applications/ (accessed on 21 April 2020).
- Fiorentino, M.C.; Moccia, S.; Cipolletta, E.; Filippucci, E.; Frontoni, E. A learning approach for informative-frame selection in US rheumatology images. In Proceedings of the International Conference on Image Analysis and Processing, Cham, Switzerland; 2019; pp. 228–236. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 4, 2951–2959. [Google Scholar]
- Hu, L.Y.; Huang, M.W.; Ke, S.W.; Tsai, C.F. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 1st ed.; O’Reilly Media: Gravenstein Highway North, Sebastopol, CA, USA, 2017. [Google Scholar]
- Kwon, H.; Park, J.; Lee, Y. Stacking ensemble technique for classifying breast cancer. Healthc. Inform. Res. 2019, 25, 283–288. [Google Scholar] [CrossRef]
- Mohammed, M.; Mwambi, H.; Omolo, B.; Elbashir, M.K. Using stacking ensemble for microarray-based cancer classification. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 12–14 August 2018; pp. 1–8. [Google Scholar]
- Zeng, X.; Martinez, T.R. Distribution-balanced stratified cross-validation for accuracy estimation. J. Exp. Theor. Artif. Intell. 2000, 12, 1–12. [Google Scholar] [CrossRef]
A | B | Result |
---|---|---|
False | False | False |
False | True | False |
True | False | False |
True | True | True |
Feature | Correlation Coefficient |
---|---|
Midfoot area | 0.935 |
Foot area | 0.619 |
Rear pressure ratio | 0.592 |
Sum pressure | 0.443 |
Mean pressure | 0.400 |
Actual Positive | Actual Negative | |
---|---|---|
Predicted Positive | True positive (TP) | False positive (FP) |
Predicted Negative | False negative (FN) | True negative (TN) |
Fine-Tuned VGG16 | Fine-Tuned InceptionV3 | k−NN | CART | Stacking Ensemble | |
---|---|---|---|---|---|
Mean | 0.8181 | 0.8153 | 0.9088 | 0.8700 | 0.9255 |
Std. | 0.0097 | 0.0274 | 0.0039 | 0.0064 | 0.0042 |
Min | 0.8094 | 0.7807 | 0.9028 | 0.8640 | 0.9188 |
Median | 0.8168 | 0.8161 | 0.9090 | 0.8691 | 0.9259 |
Max | 0.8346 | 0.8567 | 0.9139 | 0.8800 | 0.9304 |
Computational time [min.] | 200 | 240 | 10 | 2 | 213 |
Image | ||||
---|---|---|---|---|
AI score | 0.168 | 0.171 | 0.279 | 0.281 |
Labeling type | Concave | Normal | Normal | Flat |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, J.; Kang, Y.-J.; Noh, Y. A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data. Sensors 2020, 20, 4481. https://doi.org/10.3390/s20164481
Chae J, Kang Y-J, Noh Y. A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data. Sensors. 2020; 20(16):4481. https://doi.org/10.3390/s20164481
Chicago/Turabian StyleChae, Jonghyeok, Young-Jin Kang, and Yoojeong Noh. 2020. "A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data" Sensors 20, no. 16: 4481. https://doi.org/10.3390/s20164481