Self-Power Dynamic Sensor Based on Triboelectrification for Tilt of Direction and Angle
"> Figure 1
<p>(<b>a</b>) Overall schematics of the orientation and tilt triboelectric sensor (OT-TES); (<b>b</b>) Cross-sectional view of the OT-TES; (<b>c</b>) Working mechanism of the OT-TES.</p> "> Figure 2
<p>Electrical signals of a polytetrafluoroethylene (PTFE) ball from one Al electrode: (<b>a</b>) Open-circuit voltage; (<b>b</b>) Short-circuit current.</p> "> Figure 3
<p>(<b>a</b>) Simple circuit diagram of a multi-channel system, including the eight electrodes located on the OT-TES. The data acquisition board (DAQ) conducts the data acquisition, and the personal computer (PC) analyzes the data; (<b>b</b>) Cross-sectional view of the OT-TES during tilting to the left and right side; (<b>c</b>–<b>e</b>) The DAQ output voltage measurements of a PTFE ball moving between two Al electrodes: (<b>c</b>) Tilt OT-TES at 10°; (<b>d</b>) tilt OT-TES at 20°; and (<b>e</b>) tilt OT-TES at 30°.</p> "> Figure 4
<p>(<b>a</b>–<b>c</b>) The DAQ output voltage according to the number of PTFE balls occupying the bottom surface. The tilting angle and frequency are 20° and 0.5 Hz, respectively: (<b>a</b>) The amount of balls filled 12% of the bottom surface; (<b>b</b>) The amount of balls filled 25% of the bottom surface; (<b>c</b>) The amount of balls filled 50% of the bottom surface; (<b>d</b>) The open-circuit voltage of the bottom side with 25% amount of balls according to the tilting angle; (<b>e</b>) The open-circuit voltage of the bottom side and the top side.</p> "> Figure 5
<p>(<b>a</b>) The schematic of the OT-TES and each electrode number. (<b>b</b>–<b>e</b>) Voltage measurements of the OT-TES from eight Al electrodes when the tilt is 45 degrees to the left and right side and around to the center of the OT-TES: (<b>b</b>) The DAQ output voltage of electrode 1 and 2, and (<b>c</b>) the DAQ output voltage of electrode 5 and 6. (<b>d</b>) The DAQ output voltage of electrode 3 and 4, and (<b>e</b>) the DAQ output voltage of electrode 7 and 8.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. OT-TES with One PTFE Ball
3.2. Multi-Channel System
3.3. OT-TES with Multiple PTFE Balls
3.4. Comprehensive Analysis of OT-TES
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Castle, G.S.P. Contact charging between insulators. J. Electostat. 1997, 40, 13–20. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, Z.-H.; Jing, Q.; Bai, P.; Pan, C.; Yang, Y.; Zhou, Y.; Wang, Z.L. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Lett. 2013, 13, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yang, Y.; Hu, T.C.; Su, Y.; Hu, C.; Wang, Z.L. Triboelectric Nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2013, 2, 1019–1024. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Yao, K.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 2, 328–334. [Google Scholar] [CrossRef]
- Zhu, G.; Su, Y.; Bai, P.; Chen, J.; Jing, Q.; Yang, W.; Wang, Z.L. Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano 2014, 8, 6031–6037. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.F.; Felix-Navarro, R.M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277–290. [Google Scholar] [CrossRef]
- McCarty, L.S.; Whitesides, G.M. Electrostatic Charging due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angew. Chem. Int. Ed. 2008, 47, 2188–2207. [Google Scholar] [CrossRef] [PubMed]
- Baytekin, H.T.; Patashinski, A.Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B.A. The Mosaic of Surface Charge in Contact Electrification. Science 2011, 333, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z.L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D.H. Fabric-Based Integrated Energy Devices for Wearable Activity Monitors. Adv. Mater. 2014, 26, 6329–6334. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.R.; Lin, L.; Zhu, G.; Wu, W.Z.; Zhang, R.; Wang, Z.L. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 2012, 12, 3109–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Pan, C.F.; Guo, W.X.; Chen, C.Y.; Zhou, Y.S.; Yu, R.M.; Wang, Z.L. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Lett. 2012, 12, 4960–4965. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y.S.; Jing, Q.S.; Pan, C.F.; Wang, Z.L. Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Lett. 2013, 13, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, S.H.; Xie, Y.N.; Jing, Q.S.; Niu, S.M.; Hu, Y.F.; Wang, Z.L. Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Lett. 2013, 13, 2916–2923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.H.; Xie, Y.N.; Niu, S.M.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Lin, Z.-H.; Niu, S.M.; Lin, L.; Xie, Y.N.; Pradel, K.C.; Wang, Z.L. Motion Charged Battery as Sustainable Flexible-Power-Unit. ACS Nano 2013, 7, 11263–11271. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Tang, W.; Too, Z.-H.; Zhang, X.S.; Han, M.D.; Liu, W.; Zhang, H.X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.S.; Zhang, H.L.; Liu, Y.; Lee, S.M.; Wang, Z.L. A Single-Electrode Based Triboelectric Nanogenerator as Self-Powered Tracking System. Adv. Mater. 2013, 25, 6594–6601. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Xie, Y.N.; Niu, S.M.; Lin, L.; Liu, C.; Zhou, Y.S.; Wang, Z.L. Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized-Air Injection: Methodology and Theoretical Understanding. Adv. Mater. 2014, 26, 6720–6728. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xie, Y.N.; Wang, S.H.; Wu, W.Z.; Niu, S.M.; Wen, X.N.; Wang, Z.L. Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano 2013, 7, 8266–8274. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, G.; Yang, W.Q.; Jing, Q.S.; Bai, P.; Yang, Y.; Hou, T.C.; Wang, Z.L. Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor. Adv. Mater. 2013, 25, 6094–6099. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Liu, Y.; Yang, W.Q.; Su, Y.J.; Wang, Z.L. Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. ACS Nano 2014, 8, 2649–2657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Self-Powered Nanosensors and Nanosystems. Adv. Mater. 2012, 24, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Han, C.B.; Du, W.; Zhang, C.; Tang, W.; Zhang, L.; Wang, Z.L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Kim, D.; Yang, Y.; Lin, L.; Lin, Z.-H.; Hwang, W.; Wang, Z.L. Triboelectric Nanogenerator for harvesting pendulum oscillation energy. Nano Energy 2013, 2, 1113–1120. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, S.; Niu, S.; Lin, L.; Jing, Q.; Su, Y.; Wu, Z.; Wang, Z.L. Multi-layered disk Triboelectric Nanogenerator for harvesting hydropower. Nano Energy 2014, 6, 129–136. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, G.; Zhang, H.; Chen, J.; Zhong, X.; Lin, Z.-H.; Su, Y.; Bai, P.; Wen, X.; Wang, A.L. Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System. ACS Nano 2013, 7, 9461–9468. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, J.; Jing, Q.; Niu, S.; Wu, W.; Wang, Z.L. Triboelectric Nanogenerator Built on Suspended 3D Spiral Structure as Vibration and Positioning Sensor and Wave Energy Harvester. ACS Nano 2013, 7, 10424–10432. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in Triboelectric Nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Bai, P.; Zhu, G.; Jing, Q.; Yang, J.; Chen, J.; Su, Y.; Ma, J.; Zhang, G.; Wang, Z.L. Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813. [Google Scholar] [CrossRef]
- Bae, H.; Lee, B.-H.; Lee, D.; Seol, M.-L.; Kim, D.; Han, J.-W.; Kim, C.-K.; Jeon, S.-B.; Ahn, D.; Park, S.-J.; et al. Physically Transient Memory on a Rapidly Dissoluble Paper for Security Application. Sci. Rep. 2016, 6, 38324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, F.; Lin, L.; Niu, S.; Yang, J.; Wu, W.; Wang, S.; Liao, Q.; Zhang, Y.; Wang, Z.L. Self-Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body using a Triboelectric Sensor. Adv. Funct. Mater. 2014, 24, 7488–7494. [Google Scholar] [CrossRef]
- Wang, Z.L. Self-Powered Nanotech. Sci. Am. 2007, 298, 82–87. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Deng, W.; Jin, L.; Chun, F.; Pan, H.; Gu, B.; Zhang, H.; Lv, Z.; Yang, W.; et al. Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring. ACS Nano 2017, 11, 7440–7446. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Wu, W. Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.S. Electrolytic tilt sensor fabricated by using electroplating process. Sens. Actuators A Phys. 2011, 167, 1–7. [Google Scholar] [CrossRef]
- Champion, R.A.; Rutter, S.M.; Penning, P.D. An automatic system to monitor lying, standing and walking behavior of grazing animals. Appl. Anim. Behav. Sci. 1997, 54, 291–305. [Google Scholar] [CrossRef]
- Xing, Y.Z.; Schneider, F. A bubble-level tilt sensor with a large measurement range. Sens. Actuators A Phys. 1989, 17, 339–344. [Google Scholar] [CrossRef]
- Choi, Y.C.; Choi, J.C.; Kong, S.H. A MEMS tilt sensor with expanded operating range and improved sensitivity. Jpn. J. Appl. Phys. 2014, 53, 06JM12. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, H.; Kim, I.; Yu, J.; Kim, D. Self-Power Dynamic Sensor Based on Triboelectrification for Tilt of Direction and Angle. Sensors 2018, 18, 2384. https://doi.org/10.3390/s18072384
Roh H, Kim I, Yu J, Kim D. Self-Power Dynamic Sensor Based on Triboelectrification for Tilt of Direction and Angle. Sensors. 2018; 18(7):2384. https://doi.org/10.3390/s18072384
Chicago/Turabian StyleRoh, Hyeonhee, Inkyum Kim, Jinsoo Yu, and Daewon Kim. 2018. "Self-Power Dynamic Sensor Based on Triboelectrification for Tilt of Direction and Angle" Sensors 18, no. 7: 2384. https://doi.org/10.3390/s18072384
APA StyleRoh, H., Kim, I., Yu, J., & Kim, D. (2018). Self-Power Dynamic Sensor Based on Triboelectrification for Tilt of Direction and Angle. Sensors, 18(7), 2384. https://doi.org/10.3390/s18072384