Passive RFID-Based Inventory of Traffic Signs on Roads and Urban Environments
"> Figure 1
<p>System overview.</p> "> Figure 2
<p>Spatial location of the detected signs.</p> "> Figure 3
<p>Map generated from the detected signs information.</p> "> Figure 4
<p>Propagation paths.</p> "> Figure 5
<p>Test configuration.</p> "> Figure 6
<p>Maximum distance range for a non-faced passive tag.</p> "> Figure 7
<p>Simulation results: <span class="html-italic">v</span> = 50 Km/h, <span class="html-italic">d</span> = 2 m, <span class="html-italic">f</span> = 866.5 MHz.</p> "> Figure 8
<p>Simulation results: <span class="html-italic">v</span> = 120 Km/h, <span class="html-italic">d</span> = 2 m, <span class="html-italic">f</span> = 866.5 MHz.</p> "> Figure 9
<p>Simulation results: <span class="html-italic">v</span> = 50 Km/h, <span class="html-italic">d</span> = 4 m, <span class="html-italic">f</span> = 866.5 MHz.</p> "> Figure 10
<p>Simulation results: <span class="html-italic">v</span> = 120 Km/h, <span class="html-italic">d</span> = 4 m, <span class="html-italic">f</span> = 866.5 MHz.</p> "> Figure 11
<p>Simulation results: <span class="html-italic">v</span> = 50 Km/h, <span class="html-italic">d</span> = 2 m, <span class="html-italic">f</span> = 866.5 MHz in a severe multi-path environment.</p> "> Figure 12
<p>Simulation results: <span class="html-italic">v</span> = 50 Km/h, <span class="html-italic">d</span> = 2 m, <span class="html-italic">f</span> = 2450 MHz.</p> "> Figure 13
<p>Tags over the traffic sign (<b>left</b>) and configuration setup (<b>right</b>).</p> "> Figure 14
<p>Number of detections for each studied case.</p> ">
Abstract
:1. Introduction
2. System Description and Implementation Aspects
2.1. System Description
2.2. Implementation Aspects
2.2.1. Tag Requirements and Data Codification
2.2.2. Software Architecture
2.2.3. Costs Considerations
3. RFID Link Budget Calculation
3.1. Downlink (Reader to Tag) Communication
3.1.1. Background
3.1.2. Propagation under Real Conditions
3.2. Uplink (Tag to Reader) Communication
4. System Validation
4.1. Experimental Comparison between Passive and Active Technologies
4.1.1. Equipment
(a) Passive components
(b) Active components
4.1.2. Test Setup and Experimental Results
Passive Case
Active Case
4.1.3. Comparative of Results: Selection of the RFID Technology
- cost per tag
- need for battery replacement and higher maintenance costs
- higher probability of interference with other ISM networks
- proprietary communications protocols
- The obtained distance range (around 7 m from static experiments) seems satisfactory for inventory of traffic signs and other urban facilities, since the identifiers will be read progressively while the reader is approaching to the tag, employing a usual vehicle speed (50–100 Km/h, i.e., 14–28 m/s) and considering the theoretical data rate (40 Kbps according to the EPC Global 1G2 ISO 18000-6C [42], i.e., around 400 tags/s for the employed tag).
- A complex anti-collision protocol is not necessary, since it is possible to detect several tags placed at the same metallic plate.
4.2. Simulated In-Motion Results
4.3. Experimental In-Motion Validation
5. Discussion: Comparison with Related Works
- Price/tag: this value is not provided, but we can assume similar prices in the case that these works employ ruggedized passive tags.
- Tag area: this value only is given by [22] (98 × 12 mm2). Since all these works use the same technology, also we can assume similar areas.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carrasco, J.P.; De la Escalera, A.; Armingol, J.M. Recognition Stage for a Speed Supervisor Based on Road Sign Detection. Sensors 2012, 12, 12153–12168. [Google Scholar] [CrossRef] [Green Version]
- Villalón-Sepúlveda, G.; Torres-Torriti, M.; Flores-Calero, M. Traffic Sign Detection System for Locating Road Intersections and Roundabouts: The Chilean Case. Sensors 2017, 17, 1207. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.M.; Baek, N.R.; Cho, S.W.; Kim, K.W.; Park, K.R. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor. Sensors 2017, 17, 2475. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.T.; Raj, R.G. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network. Sensors 2017, 17, 853. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Guan, H.; Wang, C. Automated Extraction of Urban Road Facilities Using Mobile Laser Scanning Data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2167–2181. [Google Scholar] [CrossRef]
- Balali, V.; Jahangiri, A.; Ghanipoor Machiani, S. Multi-class US traffic signs 3D recognition and localization via image-based point cloud model using color candidate extraction and texture-based recognition. J. Adv. Eng. Inform. 2017, 32, 263–274. [Google Scholar] [CrossRef]
- Timofte, R.; Zimmermann, K.; Van Gool, L. Multi-view traffic sign detection, recognition, and 3D localisation. Mach. Vis. Appl. 2014, 25, 633–647. [Google Scholar] [CrossRef]
- Balali, V.; Ashouri Rad, A.; Golparvar-Fard, M. Detection, classification, and mapping of U.S. traffic signs using google street view images for roadway inventory management. J. Vis. Eng. 2015, 15, 1–18. [Google Scholar] [CrossRef]
- Sato, Y.; Makane, K. Development and Evaluation of In-Vechicle Signing System Utilizing RFID Tags as Digital Traffic Signals. Int. J. ITS Res. 2006, 4, 53–58. [Google Scholar]
- Măriuţ, F.; Foşalău, C.; Zet, C.; Petrişor, D. Experimental Traffic Sign Detection using I2V Communication. In Proceedings of the 35th International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 3–4 July 2012; pp. 141–145. [Google Scholar] [CrossRef]
- Paul, A.; Bharadwaj, N.; Bhat, A.S.; Shroff, S.; Seenanna, V.; Sitharam, T.G. Design and Prototype of an In-Vehicle Road Sign Delivery System using RFID. In Proceedings of the 12th International Conference on ITS Telecommunications, Taipei, Taiwan, 5–8 November 2012; pp. 220–225. [Google Scholar] [CrossRef]
- Pérez, J.; Seco, F.; Milanés, V.; Jiménez, A.; Díaz, J.C.; De Pedro, T. An RFID-based intelligent vehicle speed controller using active traffic signals. Sensors 2010, 10, 5872–5887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Li, X.; Tang, W.; Zhang, W.; Li, B. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors. Sensors 2014, 14, 23095–23118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, K. RFID-Based Vehicle Positioning and Its Applications in Connected Vehicles. Sensors 2014, 14, 4225–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinsloo, J.; Malekian, R. Accurate Vehicle Location System Using RFID, an Internet of Things Approach. Sensors 2016, 16, 825. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Hussein, H.A. Traffic Lights System Based on RFID for Autonomous Driving Vehicle. In Proceedings of the Annual Conference on New Trends in Information & Communications Technology Applications (NTICT), Baghdad, Iraq, 7–9 March 2017; pp. 122–127. [Google Scholar] [CrossRef]
- Mandal, K.; Sen, A.; Chakraborty, A.; Roy, S.; Batabyal, S.; Bandyopadhyay, S. Road Traffic Congestion Monitoring and Measurement using Active RFID and GSM Technology. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1375–1379. [Google Scholar] [CrossRef]
- Sundar, R.; Hebbar, S.; Golla, V. Implementing Intelligent Traffic Control System for Congestion Control, Ambulance Clearance, and Stolen Vehicle Detection. IEEE Sensors J. 2015, 15, 1109–1113. [Google Scholar] [CrossRef]
- DiGiampaolo, E.; Martinelli, V. A Passive UHF-RFID System for the Localization of an Indoor Autonomous Vehicle. IEEE Trans. Ind. Electron. 2012, 59, 3961–3970. [Google Scholar] [CrossRef]
- Hoffman, A.J.; Pretorius, A.; Wang, Y. Geometry based analysis of an alternative RFID interrogator placement for electronic vehicle identification. In Proceedings of the IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 2390–2397. [Google Scholar] [CrossRef]
- Larionov, A.A.; Ivanov, R.E.; Vishnevsky, V.M. UHF RFID in Automatic Vehicle Identification: Analysis and Simulation. IEEE J. Radio Freq. Identif. 2017, 1, 3–12. [Google Scholar] [CrossRef]
- Park, S.; Lee, H. Self-Recognition of Vehicle Position Using UHF Passive RFID Tags. IEEE Trans. Ind. Electron. 2013, 60, 226–234. [Google Scholar] [CrossRef]
- Wang, Y.; Bialkowski, K.S.; Pretorius, A.J.; Du Plooy, A.G.; Abbosh, A.M. In-Road Microwave Sensor for Electronic Vehicle Identification and Tracking: Link Budget Analysis and Antenna Prototype. IEEE Trans. Intell. Transp. Syst. 2018, 19, 123–128. [Google Scholar] [CrossRef]
- Małecki, K.; Kopaczyk, K. RFID-Based Traffic Signs Recognition System. In Proceedings of the International Conference on Transport Systems Telematics, Ustron, Poland, 23–26 October 2013; pp. 115–122. [Google Scholar] [CrossRef]
- Song, J.-H.; Jee, G.-I. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area. Sensors 2016, 16, 1688. [Google Scholar] [CrossRef] [PubMed]
- Solic, P.; Blazevic, Z.; Skiljo, M.; Patrono, L.; Colella, R.; Rodrigues, J.J. Gen2 RFID as IoT Enabler: Characterization and Performance Improvement. IEEE Wireless Commun. 2017, 24, 33–39. [Google Scholar] [CrossRef]
- García-Garrido, M.A.; Ocana, M.; Llorca, D.F.; Arroyo, E.; Pozuelo, J.; Gavilán, M. Complete Vision-Based Traffic Sign Recognition Supported by an I2V Communication System. Sensors 2012, 12, 1148–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.; Wang, S.; Cheng, X. Virtual Track: Applications and Challenges of the RFID System on Roads. IEEE Netw. 2014, 28, 42–47. [Google Scholar] [CrossRef]
- Zuffanelli, S.; Aguila, P.; Zamora, G.; Paredes, F.; Martin, F.; Bonache, J. A High-Gain Passive UHF-RFID Tag with Increased Read Range. Sensors 2016, 16, 1150. [Google Scholar] [CrossRef] [PubMed]
- Park, C.R.; Eom, K.H. RFID Label Tag Design for Metallic Surface Environments. Sensors 2011, 11, 938–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamani, A.; Yagoub, M.C.; Vuong, T.P.; Touhami, R. A Novel Broadband Antenna Design for UHF RFID Tags on Metallic Surface Environments. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 91–94. [Google Scholar] [CrossRef]
- Hidalgo, E.; Munoz, F.; de Mier, A.G.; Carvajal, R.G.; Martin-Clemente, R. Wireless Inventory of Traffic Signs based on Passive RFID Technology. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), Vienna, Austria, 10–14 November 2013; pp. 5467–5471. [Google Scholar] [CrossRef]
- Hancke, G.P.; Hancke, G.P., Jr. The Role of Advanced Sensing in Smart Cities. Sensors 2013, 13, 393–425. [Google Scholar] [CrossRef] [PubMed]
- Mora, H.; Gilart-Iglesias, V.; Pérez-del Hoyo, R.; Andújar-Montoya, M.D. A Comprehensive System for Monitoring Urban Accessibility in Smart Cities. Sensors 2017, 17, 1834. [Google Scholar] [CrossRef] [PubMed]
- RFID Journal. Available online: https://www.rfidjournal.com/faq/show?85 (accessed on 5 June 2018).
- AMI Track. Available online: http://www.amitracks.com/2013/10/simple-cost-analysis-for-rfid-options/ (accessed on 5 June 2018).
- DGT (Spanish General Traffic Direction) Magazine. Available online: http://revista.dgt.es/es/reportajes/2016/02FEBRERO/0216-Asi-se-fabrica-una-senal.shtml#.WsyGZpdLfIU (accessed on 5 June 2018).
- Griffin, J.D.; Durgin, G.D. Complete link budgets for backscatter-radio and RFID systems. IEEE Antennas Propag. Mag. 2009, 51, 11–25. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley: New York, NY, USA, 2016; ISBN 978-1118642061. [Google Scholar]
- Bocus, M.Z.; Dettmann, C.; Coon, J.P. An approximation of the first order Marcum Q-function with application to network connectivity analysis. IEEE Commun. Lett. 2013, 17, 499–502. [Google Scholar] [CrossRef]
- Aroor, S.R.; Deavours, D.D. Evaluation of the State of Passive UHF RFID: An Experimental Approach. IEEE Syst. J. 2007, 1, 168–176. [Google Scholar] [CrossRef]
- EPCglobal. Radio-Frequency Identity Protocols, Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz–960 MHz, Version 1.2.0. Specification for RFID Air Interface. 2008. Available online: https://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf (accessed on 22 July 2018).
- Dobkin, D. The RF in RFID, 2nd ed.; Elsevier: New York, NY, USA, 2012; ISBN 978-0123945839. [Google Scholar]
- Jin, C.; Cho, S.H.; Jeon, K.Y. Performance Evaluation of RFID EPC Gen2 Anti-collision Algorithm in AWGN Environment. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 5–8 August 2007; pp. 2066–2070. [Google Scholar] [CrossRef]
- Ukkonen, L.; Sydänheimo, L.; Kivikoski, M. Effects of Metallic Plate Size on the Performance of Microstrip Patch-Type Tag Antennas for Passive RFID. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 410–413. [Google Scholar] [CrossRef]
Work | Application | Technology | Frequency (MHz) |
---|---|---|---|
[9] Sato, 2006 | In-vehicle traffic sign detection | Passive | 13.56 |
[10] Mariut, 2012 | In-vehicle traffic sign detection | Active | 2400–2483 |
[11] Paul 2012 | Traffic sign alert system | Active | 867 |
[12] Pérez, 2010 | Intelligent speed controller | Active | 433 |
[13] Song, 2014 | Vehicle positioning in tunnels | Active | 417.05–435.9 |
[14] Wang, 2014 | Vehicle positioning | Active | 902–928 |
[15] Prinsloo, 2016 | Vehicle location for IoT applications | Passive | 0.125–0.134 |
[16] Ali, 2017 | Traffic light recognition | Passive | 13.56 |
[17] Mandal, 2011 | Road traffic congestion monitoring | Active | 2400 |
[18] Sundar, 2015 | Traffic congestion control, ambulance Clearance and stolen vehicle detection | Passive | 0.125 |
[19] Digiampaolo, 2012 | Autonomous vehicle location | Passive | 870 |
[20] Hoffman, 2015 | Vehicle identification | Passive | 920–923 |
[21] Larionov, 2017 | Automatic vehicle identification | Passive | 860–960 |
[22] Park, 2013 | Recognition of vehicle position | Passive | 917–923.5 |
[23] Wang, 2017 | Vehicle identification | Passive | 910–920 |
Field (Used Name) | Length (bits) | Description |
---|---|---|
Signal (Sg) | 10 | Indicates the type of signal. |
Signal number (SN) | 10 1 | Identifier of the traffic sign within its stretch. |
Stretch (St) | 8 2 | Identifies the stretch within a road. |
Road (Rd) | 26 3 | Road identifier. |
Kilometer (Km) | 11 4 | Indicates the kilometric location on the road of the traffic sign. |
Meter (M) | 10 | Indicates the distance in meters from the start of the kilometer to the traffic sign. |
Installation date (InD) | 10 5 | Indicates the date when the traffic sign was installed, in order to know if it has to be replaced. |
Cyclic redundancy check (CRC) | 5 | Code to detect possible errors in the reception of the EPC. |
Distance (m) | Detected Tags |
---|---|
0.1 | 1, 2, 3, 4, 5 |
1 | 2, 3, 4, 5 |
2 | 2, 3, 4, 5 |
4 | 3, 4, 5 |
6.7 | 5 |
Readings without Metallic Plate | Readings with Metallic Plate | |
---|---|---|
NT02 | 68 | 2 |
RT02 | 37 | 26 |
ZT02 | 37 | 30 |
Reader Antenna Distance from Floor (m) | Maximum Range for RT02 (m) | Maximum Range for ZT02 (m) |
---|---|---|
~0 | 25 | 30 |
0.75 | 28 | 31 |
1.5 | 30 | 34 |
Speed (Km/h) | Distance d (m) | Height (m) | Detection | Number of Detections |
---|---|---|---|---|
50 | 2 | 1.28 | Yes | 2 |
50 | 4 | 1.28 | Yes | 2 |
50 | 2 | 2.13 | Yes | 3 |
50 | 4 | 2.13 | Yes | 3 |
50 | 2 | 2.35 | Yes | 4 |
50 | 4 | 2.35 | Yes | 3 |
65 | 2 | 1.28 | No | 1 |
65 | 4 | 1.28 | No | 0 |
65 | 2 | 2.13 | Yes | 3 |
65 | 4 | 2.13 | Yes | 2 |
65 | 2 | 2.35 | Yes | 3 |
65 | 4 | 2.35 | Yes | 3 |
80 | 2 | 1.28 | No | 0 |
80 | 4 | 1.28 | No | 0 |
80 | 2 | 2.13 | Yes | 3 |
80 | 4 | 2.13 | Yes | 2 |
80 | 2 | 2.35 | Yes | 2 |
80 | 4 | 2.35 | Yes | 2 |
[9] | [10] | [11] | [12] | This Work | |
---|---|---|---|---|---|
Type | Passive | Active | Active | Active | Passive |
Application | In-vehicle traffic signing | In-vehicle traffic signing | Traffic sign alert system | Intelligent speed controller | Inventory and location |
Carrier frequency (MHz) | 13.56 | 2400–2483 | 867 | 433 | 866.5 |
On average read range (meters) | 0.4 | 30 | 10 | 23 | 7 1 |
Speed of the car (Km/h) | <20 | <100 | <90 | <24 | <80 2 |
Tag ID capacity (bits) | 64 | 24 | 192 | - | 96 |
Price/tag (US$) | 1.31 | - | 20 | 10–20 | 3.3 |
Maximum reading rate (Tags/s) | 50 3 | 10 3 | - | - | 400 3 |
Data rate (Kbps) | 3.2 | 250 | - | - | 40 |
Tag area (mm × mm) | 76 × 45 | - | 80 × 40 | 123 × 80 | 51.5 × 47.5 |
[19] | [20] | [21] | [22] | [23] | This Work | |
---|---|---|---|---|---|---|
Application | Autonomous vehicle location | Vehicle ID | Automatic vehicle ID | Recognition of vehicle position | Vehicle ID | Inventory and location |
Carrier frequency (MHz) | 870 | 923 | 860–960 | 902.75–927.25 | 900–920 | 866.5 |
On average read range (meters) | 0.5 | 4 | 10 1 | 0.8 | 0.5 2 | 7 3 |
Speed of the car (Km/h) | <128 1 | <300 4 | <90 1 | <1.8 | <100 4 | <80 5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Oya, J.R.; Martín Clemente, R.; Hidalgo Fort, E.; González Carvajal, R.; Muñoz Chavero, F. Passive RFID-Based Inventory of Traffic Signs on Roads and Urban Environments. Sensors 2018, 18, 2385. https://doi.org/10.3390/s18072385
García Oya JR, Martín Clemente R, Hidalgo Fort E, González Carvajal R, Muñoz Chavero F. Passive RFID-Based Inventory of Traffic Signs on Roads and Urban Environments. Sensors. 2018; 18(7):2385. https://doi.org/10.3390/s18072385
Chicago/Turabian StyleGarcía Oya, José Ramón, Rubén Martín Clemente, Eduardo Hidalgo Fort, Ramón González Carvajal, and Fernando Muñoz Chavero. 2018. "Passive RFID-Based Inventory of Traffic Signs on Roads and Urban Environments" Sensors 18, no. 7: 2385. https://doi.org/10.3390/s18072385
APA StyleGarcía Oya, J. R., Martín Clemente, R., Hidalgo Fort, E., González Carvajal, R., & Muñoz Chavero, F. (2018). Passive RFID-Based Inventory of Traffic Signs on Roads and Urban Environments. Sensors, 18(7), 2385. https://doi.org/10.3390/s18072385