Evaluation of Hyaluronic Acid Dilutions at Different Concentrations Using a Quartz Crystal Resonator (QCR) for the Potential Diagnosis of Arthritic Diseases
<p>Change in the morphology of the conductance curve for bare crystal and in contact with a liquid sample.</p> "> Figure 2
<p>Shear Stress and Shear Rate for Newtonian (red) and Pseudoplastic (black) fluids.</p> "> Figure 3
<p>Factor χ for polymeric fluids (pseudoplastic behavior).</p> "> Figure 4
<p>(<b>a</b>) Simplified Diagram Acquisition System of the Biosensor; (<b>b</b>) Blocks Diagram System of the Biosensor.</p> "> Figure 5
<p>Gamry Cell (<b>a</b>) and Prototype System (<b>b</b>).</p> "> Figure 6
<p>QCR biosensor performance vs. Fungilab viscometer performance.</p> "> Figure 7
<p>Response curve—Δf vs. Concentration of the glycerol samples (Newtonian behavior).</p> "> Figure 8
<p>Response curve of the QCR biosensor vs. the square root of the density-viscosity product (<b>a</b>) and Response curve of the QCR biosensor vs. concentration (<b>b</b>).</p> "> Figure 9
<p>Apparent viscosity obtained by Rouse model vs. viscometer measures.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Quartz Crystal Resonator
2.2. Homogeneous Viscoelastic Samples with Pseudo-Plastic Behavior
3. Materials and Methods
3.1. Samples
3.2. Crystals and Holder Cell
3.3. Viscometer of Reference
3.4. Biosensor
3.5. Measurement Protocol
3.6. Protocol to Clean the Crystal
4. Results
4.1. Biosensor Performance
4.2. Hyaluronic Acid Samples
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
H.A | Hyaluronic Acid |
QCR | Quartz crystal resonator |
M | Media |
SD | Standard deviation |
Appendix A
References
- Pascual, E.; Jovani, V. Synovial fluid analysis. Best Pract. Res. Rheumatol. 2005, 19, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Brannan, S.R.; Jerrard, D.A. Synovial fluid analysis. J. Emerg. Med. 2006, 30, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Denton, J. Synovial fluid analysis in the diagnosis of joint disease. Diagn. Histopathol. 2012, 18, 159–168. [Google Scholar] [CrossRef]
- Sterling, W. Rheumatology Secrets, 3rd ed.; Elsevier: Philadelphia, PA, USA, 2015. [Google Scholar]
- Araceli, M.-C.; Núñez, C.; Cabiedes, J. Synovial fluid analysis. Reumatol. Clín. 2010, 6, 316–321. [Google Scholar]
- Stafford, C.; Niedermeier, W.; Holley, H.; Pigman, W. Studies on the concentration and intrinsic viscosity of hyaluronic acid in synovial fluids of patients with rheumatic diseases. Ann. Rheum. Dis. 1964, 23, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Decker, B.; Mcguckin, W.F.; Mckenzie, B.F.; Slocumb, C.H. Concentration of hyaluronic acid in synovial fluid. Clin. Chem. 1959, 5, 465–469. [Google Scholar] [PubMed]
- Schurz, J.; Ribitsch, V. Rheology of synovial fluid. Biorheology 1987, 24, 385–399. [Google Scholar] [PubMed]
- Gallo Vallejo, F.J.; Giner Ruiz, V. Diagnosis: Synovial fluid analysis. Aten. Primaria 2014, 46, 29–31. [Google Scholar] [CrossRef]
- Gatter, R.A.; Andrews, R.P.; Cooley, D.A.; Fiechtner, J.J.; Minna, D.A.; Phelps, P.; Wasner, C. American college of rheumatology guidelines for performing office synovial fluid. J. Clin. Rheumatol. 1995, 1, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C. Estudio del Liquido Sinovial; Guías de Procedimientos en Reumatología: Bogotá, Colombia, 2011; pp. 41–47. (In Spanish) [Google Scholar]
- Muüller, L.; Sinn, S.; Drechsel, H.; Ziegler, C.; Wendel, H.-P.; Northoff, H.; Gehring, F.K. Investigation of Prothrombin Time in Human Whole-Blood Samples with a Quartz Crystal Biosensor. Anal. Chem. 2010, 82, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Kömpf, D.; Held, J.; Müller, S.F.; Drechsel, H.; Tschan, S.C.; Northoff, H.; Mordmüller, B.; Gehring, F.K. Real-time measurement of Plasmodium falciparum-infected erythrocyte cytoadhesion with a quartz crystal microbalance. Malar. J. 2016, 15, 317. [Google Scholar] [CrossRef] [PubMed]
- Oberfrank, S.; Drechsel, H.; Sinn, S.; Northoff, H.; Gehring, F.K. Utilisation of quartz crystal microbalance sensors with dissipation (QCM-D) for a clauss fibrinogen assay in comparison with common coagulation reference methods. Sensors 2016, 16, 282. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Q.; Chen, J.; Luo, R.; Maitz, M.F.; Huang, N. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization. Mater. Sci. Eng. C 2016, 60, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tu, Y.; Wang, X.; Pan, J.; Ding, Y. A label-free immunosensor for ultrasensitive detection of ketamine based on quartz crystal microbalance. Sensors 2015, 15, 8540–8549. [Google Scholar] [CrossRef] [PubMed]
- Alenus, J.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Csipai, P.; Gruber, J.; Peeters, M.; Cleij, T.J.; Wagner, P. Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of l-nicotine in diluted saliva and urine samples. Anal. Bioanal. Chem. 2013, 405, 6479–6487. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lim, S.-I.; Cho, Y.-Y.; Choi, S.; Song, J.-Y.; An, D.-J. Detection of H3N2 canine influenza virus using a Quartz Crystal Microbalance. J. Virol. Methods 2014, 208, 16–20. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zhang, L. Rapid Diagnosis of M. tuberculosis Using a Piezoelectric Immunosensor. Anal. Sci. 2002, 18, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Ozeki, T.; Hoshino, H.; Terao, K. AB0547 Rapid and novel immune assay platform of serum tocilizumab concentration applied by quartz-crystal microbalance (QCM) biosensor system. Ann. Rheum. Dis. 2013, 71, 669. [Google Scholar] [CrossRef]
- Sakti, S.P.; Wahyuni, F.; Juswono, U.P.; Aulanni, A.M. Development of QCM Biosensor with Specific Cow Milk Protein Antibody for Candidate Milk Adulteration Detection. Sens. Transducers 2013, 149, 143–148. [Google Scholar] [CrossRef]
- Agoston, A.; Keplinger, F.; Jakoby, B. Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sens. Actuators A Phys. 2005, 123–124, 82–86. [Google Scholar] [CrossRef]
- Cakmak, O.; Elbuken, C.; Ermek, E.; Mostafazadeh, A.; Baris, I.; Erdem Alaca, B.; Kavakli, I.H.; Urey, H. Microcantilever based disposable viscosity sensor for serum and blood plasma measurements. Methods 2013, 63, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Eris, G.; Bozkurt, A.A.; Sunol, A.; Jonáš, A.; Kiraz, A.; Alaca, B.E.; Erkey, C. Determination of viscosity and density of fluids using frequency response of microcantilevers. J. Supercrit. Fluids 2015, 105, 179–185. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Höök, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sott, K.; Elwing, H. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 2001, 73, 5796–5804. [Google Scholar] [CrossRef] [PubMed]
- García-Martinez, G.; Bustabad, E.A.; Perrot, H.; Gabrielli, C.; Bucur, B.; Lazerges, M.; Rose, D.; Rodriguez-Pardo, L.; Fariña, J.; Compère, C.; et al. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit. Sensors 2011, 11, 7656–7664. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, C.; Kihlman, S.; Rodahl, M.; Kasemo, B. The Piezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion. Langmuir 1998, 14, 248–251. [Google Scholar] [CrossRef]
- Rodahl, M.; Höök, F.; Kasemo, B. QCM Operation in Liquids: An Explanation of Measured Variations in Frequency and Q Factor with Liquid Conductivity. Anal. Chem. 1996, 68, 2219–2227. [Google Scholar] [CrossRef] [PubMed]
- Carvajal Ahumada, L.A.; Peña Pérez, N.; Herrera Sandoval, O.L.; del Pozo Guerrero, F.; Serrano Olmedo, J.J. A new way to find dielectric properties of liquid sample using the quartz crystal resonator (QCR). Sens. Actuators A Phys. 2016, 239, 153–160. [Google Scholar] [CrossRef]
- Auge, J.; Hauptmann, P.; Hartmann, J. New design for QCM sensors in liquids. Sens. Actuators B 1995, 24, 43–48. [Google Scholar] [CrossRef]
- Ferreira, G.N.M.; da-Silva, A.-C.; Tomé, B. Acoustic wave biosensors: Physical models and biological applications of quartz crystal microbalance. Trends Biotechnol. 2009, 27, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Arnau, A. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids. Sensors 2008, 8, 370–411. [Google Scholar] [CrossRef]
- Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research, Soft and Biological Matter, 1st ed.; Springer: Gewerbestrasse, Switzerland, 2015; Volume 53. [Google Scholar]
- Jakoby, B.; Art, G.; Bastemeijer, J. Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE Sens. J. 2005, 5, 1106–1111. [Google Scholar] [CrossRef]
- Resa, P.; Castro, P.; Rodríguez-López, J.; Elvira, L. Broadband spike excitation method for in-liquid QCM sensors. Sens. Actuators B Chem. 2012, 166–167, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Keiji Kanazawa, K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar] [CrossRef]
- Cassiède, M.; Daridon, J.-L.; Paillol, J.H.; Pauly, J. Characterization of the behaviour of a quartz crystal resonator fully immersed in a Newtonian liquid by impedance analysis. Sens. Actuators A Phys. 2011, 167, 317–326. [Google Scholar] [CrossRef]
- Fang, J.; Zhu, T.; Sheng, J.; Jiang, Z.; Ma, Y. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method. Sci. Rep. 2015, 5, 8491. [Google Scholar] [CrossRef] [PubMed]
- Nwankwo, E.; Durning, C. Mechanical response of thickness-shear mode quartz-crystal resonators to linear viscoelastic fluids. Sens. Actuators A Phys. 1998, 64, 119–124. [Google Scholar] [CrossRef]
- Lucklum, R. The Δf–ΔR QCM technique: An approach to an advanced sensor signal interpretation. Electrochim. Acta 2000, 45, 3907–3916. [Google Scholar] [CrossRef]
- García-Abuín, A.; Gómez-Díaz, D.; Navaza, J.M.; Regueiro, L.; Vidal-Tato, I. Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydr. Polym. 2011, 85, 500–505. [Google Scholar] [CrossRef]
- Larson, R.G. The rheology of dilute solutions of flexible polymers: Progress and problems. J. Rheol. 2005, 49, 1–70. [Google Scholar] [CrossRef]
- Bird, R.B.; Armstrong, C.R.; Hassager, O. Dynamics of Polymeric Liquids, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1987; Volume 25. [Google Scholar]
- Balazs, E.A. The Physical Properties of Synovial Fluid and the Special Role of Hyaluronic Acid. Disord. Knee 1974, 2, 63–75. [Google Scholar]
- Nakamoto, T.; Kobayashi, T. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1994, 41, 806–811. [Google Scholar] [CrossRef] [PubMed]
Normal | Inflammatory | Septic | Hemorrhagic | |
---|---|---|---|---|
Appearance | Transparent | Turbid | Turbid | Bloody |
Color | Straw-colored | Yellow-cloudy | Opaque | Red-opaque |
Viscosity | High | Low | Low | Variable |
Concentration (μg/mL) | ΔFs (Hz) | ΔΓ (Hz) | Density (mg/mL) | Viscosity (mPa·s) |
---|---|---|---|---|
400.0 | −3660 ± 49 | 3697 ± 23 | 1106 | 3.1679 ± 0.08 |
300.0 | −2968 ± 51 | 3042 ± 12 | 1054 | 2.1935 ± 0.07 |
200.0 | −2617 ± 86 | 2619 ± 14 | 1048 | 1.6643 ± 0.05 |
100.0 | −2281 ± 48 | 2287 ± 33 | 1023 | 1.2470 ± 0.01 |
50.0 | −2064 ± 32 | 2076 ± 21 | 1010 | 1.0525 ± 0.03 |
25.0 | −2011 ± 22 | 2032 ± 28 | 999 | 1.0097 ± 0.03 |
12.5 | −2004 ± 54 | 2033 ± 33 | 1007 | 0.9544 ± 0.01 |
6.3 | −1920 ± 49 | 1926 ± 21 | 1006 | 0.9020 ± 0.01 |
3.1 | −1911 ± 92 | 1943 ± 18 | 998 | 0.9140 ± 0.06 |
Concentration H.A (mg/mL) | F0 (Hz) | ΔF (Hz) | ΔΓ (Hz) | ΔR | Density (mg/mL) | Viscosity (η0) (mPa·s) |
---|---|---|---|---|---|---|
7.00 | 9983452 ± 45 | −3411 ± 11 | 3615 ± 15 | 24.6 ± 0.42 | 1032.23 | 809 |
3.50 | 9983394 ± 54 | −3381 ± 12 | 3563 ± 13 | 21.1 ± 0.48 | 1017.89 | 265 |
1.29 | 9983373 ± 33 | −3315 ± 8 | 3463 ± 15 | 18.5 ± 0.52 | 1014.32 | 91 |
0.85 | 9983428 ± 44 | −3269 ± 6 | 3341 ± 9 | 16.2 ± 0.36 | 1019.53 | 68 |
Concentration H.A (mg/mL) | QCR-Viscosity (mPa·s) | Viscometer (mPa·s) |
---|---|---|
7 | 3.25 | 748.12 |
3.5 | 3.13 | 186.60 |
1.29 | 2.99 | 50.00 |
0.85 | 2.85 | 37.78 |
Concentration H.A (mg/mL) | τ (μs) | η′/η0 | η″/η0 | tan(δ) | χ |
---|---|---|---|---|---|
7.00 | 0.30 | 0.15 | 2.84 | 0.05 | 0.06 |
3.50 | 0.10 | 0.27 | 1.66 | 0.16 | 0.15 |
1.29 | 0.04 | 0.46 | 0.99 | 0.46 | 0.32 |
0.85 | 0.03 | 0.54 | 0.85 | 0.63 | 0.39 |
Concentration H.A (mg/mL) | ΔF0 (Hz) | Equivalent Viscosity QCR (mPa·s) | Viscometer (mPa·s) | % Error with Viscometer |
---|---|---|---|---|
7.00 | −53603 | 683.6 | 748.12 | 9% |
3.50 | −23175 | 129.6 | 186.60 | 31% |
1.29 | −10476 | 26.8 | 50.00 | 46% |
0.85 | −8323 | 16.7 | 37.78 | 56% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahumada, L.A.C.; González, M.X.R.; Sandoval, O.L.H.; Olmedo, J.J.S. Evaluation of Hyaluronic Acid Dilutions at Different Concentrations Using a Quartz Crystal Resonator (QCR) for the Potential Diagnosis of Arthritic Diseases. Sensors 2016, 16, 1959. https://doi.org/10.3390/s16111959
Ahumada LAC, González MXR, Sandoval OLH, Olmedo JJS. Evaluation of Hyaluronic Acid Dilutions at Different Concentrations Using a Quartz Crystal Resonator (QCR) for the Potential Diagnosis of Arthritic Diseases. Sensors. 2016; 16(11):1959. https://doi.org/10.3390/s16111959
Chicago/Turabian StyleAhumada, Luis Armando Carvajal, Marco Xavier Rivera González, Oscar Leonardo Herrera Sandoval, and José Javier Serrano Olmedo. 2016. "Evaluation of Hyaluronic Acid Dilutions at Different Concentrations Using a Quartz Crystal Resonator (QCR) for the Potential Diagnosis of Arthritic Diseases" Sensors 16, no. 11: 1959. https://doi.org/10.3390/s16111959
APA StyleAhumada, L. A. C., González, M. X. R., Sandoval, O. L. H., & Olmedo, J. J. S. (2016). Evaluation of Hyaluronic Acid Dilutions at Different Concentrations Using a Quartz Crystal Resonator (QCR) for the Potential Diagnosis of Arthritic Diseases. Sensors, 16(11), 1959. https://doi.org/10.3390/s16111959