Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling
<p>Urolithin A attenuates the progression of hypoxia-induced PH. (<b>a</b>) Protocol for administration of UA (HX + UA) or vehicle (HX) to mice subjected to hypoxia or normoxia (NOR). (<b>b</b>) RVSP, mPAP, RVHI (RVHI = RV/LV + S), and body weight in mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6–8 per group). (<b>c</b>) Representative photomicrographs of hematoxylin and eosin (H&E) staining and elastin–van Gieson (EVG) staining of lung tissue from mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6 per group). Scale bars: 50 μm. (<b>d</b>) Qualification of pulmonary vascular remodeling by percentage of vascular medial thickness to total vessel size for mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6 per group). (<b>e</b>) Representative immunofluorescence staining of lung tissue for α-SMA (green, smooth muscle cells), vWF (red, endothelial cells) and DAPI (blue, nuclei) from mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6 per group). Scale bars: 50 μm. (<b>f</b>) Qualification analysis of the α-SMA<sup>+</sup> or vWF<sup>+</sup> areas. ** <span class="html-italic">p</span> < 0.01 compared to the NOR group, *** <span class="html-italic">p</span> < 0.001 compared to the NOR group, # <span class="html-italic">p</span> < 0.05 compared to the HX group, ## <span class="html-italic">p</span> < 0.01 compared to the HX group.</p> "> Figure 2
<p>Urolithin A inhibited NLRP3-mediated pyroptosis pathway in hypoxia-induced PH mice lungs. (<b>a</b>,<b>b</b>) Western blotting analysis for the protein expression of NLRP3, GSDMD, N-GSDMD, IL-1β, and cleaved-Caspase-1 relative to β-actin from lungs of mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6 per group). (<b>c</b>) Representative immunofluorescence staining of lung tissue for α-SMA (greens), Caspase-1 (red) and DAPI (blue) from mice exposed to hypoxia with UA or vehicle treatment (<span class="html-italic">n</span> = 6 per group). Scale bars: 50 μm. (<b>d</b>) Quantification of the α-SMA<sup>+</sup> Caspase-1<sup>+</sup> areas. (<b>e</b>) Representative TEM images of pulmonary arterial smooth muscle cells of mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 4 per group). Red arrows indicate the membrane oligomeric pores. Scale bars: 2 μm. * <span class="html-italic">p</span> < 0.05 compared to the NOR group, ** <span class="html-italic">p</span> < 0.01 compared to the NOR group, *** <span class="html-italic">p</span> < 0.001 compared to the NOR group, # <span class="html-italic">p</span> < 0.05 compared to the HX group, ## <span class="html-italic">p</span> < 0.01 compared to the HX group.</p> "> Figure 3
<p>UA alleviated the proliferation and migration of hPASMCs. (<b>a</b>) Cell viability of hPASMCs exposed to hypoxia for varying durations (<span class="html-italic">n</span> = 6 per group). * <span class="html-italic">p</span> < 0.05 compared to the 0 h group, ** <span class="html-italic">p</span> < 0.01 compared to the 0 h group, *** <span class="html-italic">p</span> < 0.001 compared to the 0 h group. (<b>b</b>) Cell viability of hPASMCs exposed to hypoxia for 48 h with different concentrations of UA (<span class="html-italic">n</span> = 6 per group). * <span class="html-italic">p</span> < 0.05 compared to the 0 μM UA group, ** <span class="html-italic">p</span> < 0.01 compared to the 0 μM UA group. (<b>c</b>) Representative images and (<b>d</b>) qualification analysis of wound confluency of hPASMCs (<span class="html-italic">n</span> = 3 per group). ** <span class="html-italic">p</span> < 0.01 compared to the control group, *** <span class="html-italic">p</span> < 0.001 compared to the control group, # <span class="html-italic">p</span> < 0.05 compared to the hypoxia group, ### <span class="html-italic">p</span> < 0.001 compared to the hypoxia group. (<b>e</b>) Representative images and (<b>f</b>) qualification analysis of cell counts of hPASMCs using Transwell assay (<span class="html-italic">n</span> = 3 per group). Scale bars: 100 μm. ** <span class="html-italic">p</span> < 0.01 compared to the control group, # <span class="html-italic">p</span> < 0.05 compared to the hypoxia group.</p> "> Figure 4
<p>UA attenuated hypoxia-induced pyroptosis in hPASMCs. (<b>a</b>,<b>b</b>) Western blotting analysis for the protein expression of NLRP3, GSDMD, N-GSDMD, IL-1β, and Caspase-1 relative to β-actin in hPASMCs exposed to hypoxia with or without UA treatment (<span class="html-italic">n</span> = 6 per group). (<b>c</b>) Representative immunofluorescence staining for α-SMA (greens), Caspase-1 (red) and DAPI (blue) in hPASMCs exposed to hypoxia with or without UA treatment (<span class="html-italic">n</span> = 3 per group). Scale bars: 50 μm. (<b>d</b>) Qualification analysis of the NLRP3<sup>+</sup> or Caspase-1<sup>+</sup> areas. ** <span class="html-italic">p</span> < 0.01 compared to the control group, *** <span class="html-italic">p</span> < 0.001 compared to the control group, # <span class="html-italic">p</span> < 0.05 compared to the hypoxia group, ## <span class="html-italic">p</span> < 0.01 compared to the hypoxia group.</p> "> Figure 5
<p>UA attenuated PASMC pyroptosis through inhibiting the NF-κB/NLRP3 signaling pathway. (<b>a</b>,<b>b</b>) Western blotting analysis for the protein expression of p-P65 relative to P65 and p-IκB-α relative to IκB-α in hPASMCs exposed to hypoxia with or without UA treatment (<span class="html-italic">n</span> = 6 per group). ** <span class="html-italic">p</span> < 0.01 compared to the control group, # <span class="html-italic">p</span> < 0.05 compared to the hypoxia group, ## <span class="html-italic">p</span> < 0.01 compared to the hypoxia group. (<b>c</b>,<b>d</b>) Western blotting analysis for the protein expression of p-P65 relative to P65 and p-IκB-α relative to IκB-α from lungs of mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6 per group). ** <span class="html-italic">p</span> < 0.01 compared to the NOR group, # <span class="html-italic">p</span> < 0.05 compared to the HX group.</p> "> Figure 6
<p>UA inhibited NF-κB/NLRP3 pathway via activating AMPK. (<b>a</b>) Molecular structure of UA. (<b>b</b>,<b>c</b>) The molecular docking models of UA with (<b>b</b>) AMPK-α1 and (<b>c</b>) AMPK-α2, respectively. The solid blue lines represent hydrogen bonds, the gray dotted lines represent hydrophobic effect, and the green dotted lines represent π-π stacking interaction. (<b>d</b>,<b>e</b>) Western blotting analysis for the protein expression of p-AMPK relative to β-actin in hPASMCs exposed to hypoxia with or without UA treatment (<span class="html-italic">n</span> = 6 per group). ** <span class="html-italic">p</span> < 0.01 compared to the control group, # <span class="html-italic">p</span> < 0.05 compared to the hypoxia group. (<b>f</b>,<b>g</b>) Western blotting analysis for the protein expression of p-AMPK relative to β-actin from lungs of mice exposed to normoxia (NOR) or hypoxia with UA (HX + UA) or vehicle (HX) treatment (<span class="html-italic">n</span> = 6 per group). ** <span class="html-italic">p</span> < 0.01 compared to the NOR group, # <span class="html-italic">p</span> < 0.05 compared to the HX group.</p> "> Figure 7
<p>The AMPK selective inhibitor Compound C hindered the protective effect of UA on hPASMCs. (<b>a</b>,<b>b</b>) Western blotting analysis for the protein expression of p-AMPK relative to β-actin in hPASMCs administered with different concentrations of Compound C (<span class="html-italic">n</span> = 3 per group). * <span class="html-italic">p</span> < 0.05 compared to the 0μM Compound C group, *** <span class="html-italic">p</span> < 0.001 compared to the 0 μM Compound C group, ns means nonsignificant. (<b>c</b>,<b>d</b>) Western blotting analysis for the protein expression of p-IκB-α relative to IκB-α and p-P65 relative to P65 in hPASMCs exposed to hypoxia with or without UA or Compound C treatment (<span class="html-italic">n</span> = 6 per group).(<b>e</b>,<b>f</b>) Western blotting analysis for the protein expression of NLRP3, N-GSDMD, IL-1β, and Caspase-1 relative to β-actin in hPASMCs exposed to hypoxia with or without UA or Compound C treatment (<span class="html-italic">n</span> = 6 per group). ** <span class="html-italic">p</span> < 0.01 compared to the control group, *** <span class="html-italic">p</span> < 0.001 compared to the control group, # <span class="html-italic">p</span> < 0.05 compared to the hypoxia group, ## <span class="html-italic">p</span> < 0.01 compared to the hypoxia group, ^ <span class="html-italic">p</span> < 0.05 compared to the hypoxia + UA group, ^^ <span class="html-italic">p</span> < 0.01 compared to the hypoxia + UA group.</p> "> Figure 8
<p>Urolithin A protects against hypoxia-induced pulmonary hypertension by inhibiting NF-κB/NLRP3-mediated PASMC pyroptosis via regulating AMPK signaling (created with BioRender.com). PASMC, pulmonary arterial smooth muscle cell; IL-1β, interleukin-1β; GSDMD, gasdermin D; NLRP3, NOD-like receptor (NLR) family pyrin domain-containing 3; AMPK, AMP-activated protein kinase.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Urolithin A Attenuates the Progression of Hypoxia-Induced PH
2.2. Urolithin A Inhibited NLRP3-Mediated Pyroptosis in Hypoxia-Induced PH Mice
2.3. Urolithin A Alleviated the Proliferation and Migration of hPASMCs
2.4. Urolithin A Attenuated Hypoxia-Induced Pyroptosis in PASMCs
2.5. Urolithin A Attenuated PASMC Pyroptosis through Inhibiting the NF-κB/NLRP3 Pathway
2.6. Urolithin A Inhibited NF-κB/NLRP3 Pathway via Activating AMPK
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Animal Model and Experiment
4.3. Hemodynamic Measurement
4.4. Transmission Electron Microscopy
4.5. Cell Culture and Treatment
4.6. Cell Counting Kit 8 Assay
4.7. Wound Scratch Assay
4.8. Transwell Assay
4.9. Hematoxylin and Eosin (H&E) and Elastin–van Gieson (EVG) Staining
4.10. Immunofluorescence Staining
4.11. Protein Extraction and Western Blotting Analysis
4.12. Molecular Docking
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mocumbi, A.; Humbert, M.; Saxena, A.; Jing, Z.C.; Sliwa, K.; Thienemann, F.; Archer, S.L.; Stewart, S. Pulmonary Hypertension. Nat. Rev. Dis. Primers 2024, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Bogaard, H.J.; Condliffe, R.; Frantz, R.; Khanna, D.; Kurzyna, M.; Langleben, D.; Manes, A.; Satoh, T.; Torres, F.; et al. Definitions and Diagnosis of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2013, 62, D42–D50. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Simonneau, G.; Gatzoulis, M.A.; Adatia, I.; Celermajer, D.; Denton, C.; Ghofrani, A.; Gomez Sanchez, M.A.; Krishna Kumar, R.; Landzberg, M.; Machado, R.F.; et al. Updated Clinical Classification of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2013, 62, D34–D41. [Google Scholar] [CrossRef] [PubMed]
- Pakhomov, N.V.; Kostyunina, D.S.; Macori, G.; Dillon, E.; Brady, T.; Sundaramoorthy, G.; Connolly, C.; Blanco, A.; Fanning, S.; Brennan, L.; et al. High-Soluble-Fiber Diet Attenuates Hypoxia-Induced Vascular Remodeling and the Development of Hypoxic Pulmonary Hypertension. Hypertension 2023, 80, 2372–2385. [Google Scholar] [CrossRef] [PubMed]
- Boucly, A.; Weatherald, J.; Savale, L.; Jaïs, X.; Cottin, V.; Prevot, G.; Picard, F.; De Groote, P.; Jevnikar, M.; Bergot, E.; et al. Risk Assessment, Prognosis and Guideline Implementation in Pulmonary Arterial Hypertension. Eur. Respir. J. 2017, 50, 1700889. [Google Scholar] [CrossRef]
- Humbert, M.; Ghofrani, H.A. The Molecular Targets of Approved Treatments for Pulmonary Arterial Hypertension. Thorax 2016, 71, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Prins, K.W.; Duval, S.; Markowitz, J.; Pritzker, M.; Thenappan, T. Chronic Use of PAH-Specific Therapy in World Health Organization Group III Pulmonary Hypertension: A Systematic Review and Meta-Analysis. Pulm. Circ. 2017, 7, 145–155. [Google Scholar] [CrossRef]
- He, S.; Ma, C.; Zhang, L.; Bai, J.; Wang, X.; Zheng, X.; Zhang, J.; Xin, W.; Li, Y.; Jiang, Y.; et al. GLI1-Mediated Pulmonary Artery Smooth Muscle Cell Pyroptosis Contributes to Hypoxia-Induced Pulmonary Hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L472–L482. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Yu, H.; Zhou, Y.; Zhang, J.; Xin, W.; Li, Y.; He, S.; Ma, C.; Zheng, X.; et al. Circular RNA Calm4 Regulates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cells Pyroptosis via the Circ-Calm4/MiR-124-3p/PDCD6 Axis. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1675–1693. [Google Scholar] [CrossRef]
- Cookson, B.T.; Brennan, M.A. Pro-Inflammatory Programmed Cell Death. Trends Microbiol. 2001, 9, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 Inflammasome Activation and Cell Death. Cell Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef] [PubMed]
- Coll, R.C.; Schroder, K.; Pelegrín, P. NLRP3 and Pyroptosis Blockers for Treating Inflammatory Diseases. Trends Pharmacol. Sci. 2022, 43, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Broz, P.; Pelegrín, P.; Shao, F. The Gasdermins, a Protein Family Executing Cell Death and Inflammation. Nat. Rev. Immunol. 2020, 20, 143–157. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef] [PubMed]
- Rabinovitch, M.; Guignabert, C.; Humbert, M.; Nicolls, M.R. Inflammation and Immunity in the Pathogenesis of Pulmonary Arterial Hypertension. Circ. Res. 2014, 115, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Chen, Y.; Wu, J.; He, Z.; Zhang, Y.; Zhang, W.; Xie, Y.; Zeng, H.; Zhong, X. A Novel Complement C3 Inhibitor CP40-KK Protects against Experimental Pulmonary Arterial Hypertension via an Inflammasome NLRP3 Associated Pathway. J. Transl. Med. 2024, 22, 164. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol. Med. 2021, 27, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, S.; Mao, B.; Zhang, Q.; Zhao, J.; Zhang, H.; Tang, X.; Chen, W. Ellagic Acid and Intestinal Microflora Metabolite Urolithin A: A Review on Its Sources, Metabolic Distribution, Health Benefits, and Biotransformation. Crit. Rev. Food Sci. Nutr. 2023, 63, 6900–6922. [Google Scholar] [CrossRef]
- Vini, R.; Jaikumar, V.S.; Remadevi, V.; Ravindran, S.; Azeez, J.M.; Sasikumar, A.; Sundaram, S.; Sreeja, S. Urolithin A: A Promising Selective Estrogen Receptor Modulator and 27-Hydroxycholesterol Attenuator in Breast Cancer. Phytother. Res. 2023, 37, 4504–4521. [Google Scholar] [CrossRef]
- Lee, H.J.; Jung, Y.H.; Choi, G.E.; Kim, J.S.; Chae, C.W.; Lim, J.R.; Kim, S.Y.; Yoon, J.H.; Cho, J.H.; Lee, S.J.; et al. Urolithin A Suppresses High Glucose-Induced Neuronal Amyloidogenesis by Modulating TGM2-Dependent ER-Mitochondria Contacts and Calcium Homeostasis. Cell Death Differ. 2021, 28, 184–202. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-Dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A Induces Mitophagy and Prolongs Lifespan in C. Elegans and Increases Muscle Function in Rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Luan, P.; Amico, D.D.; Andreux, P.A.; Laurila, P.P.; Wohlwend, M.; Li, H.; Lima, T.I.; Place, N.; Rinsch, C.; Zanou, N.; et al. Urolithin A Improves Muscle Function by Inducing Mitophagy in Muscular Dystrophy. Sci. Transl. Med. 2021, 13, eabb0319. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.R.; Zhang, M.H.; Chen, Y.J.; Sun, Y.L.; Gao, Z.M.; Li, Z.J.; Zhang, G.P.; Qin, Y.; Dai, X.Y.; Yu, X.Y.; et al. Urolithin A Ameliorates Obesity-Induced Metabolic Cardiomyopathy in Mice via Mitophagy Activation. Acta Pharmacol. Sin. 2023, 44, 321–331. [Google Scholar] [CrossRef]
- Tao, H.; Li, W.; Zhang, W.; Yang, C.; Zhang, C.; Liang, X.; Yin, J.; Bai, J.; Ge, G.; Zhang, H.; et al. Urolithin A Suppresses RANKL-Induced Osteoclastogenesis and Postmenopausal Osteoporosis by, Suppresses Inflammation and Downstream NF-ΚB Activated Pyroptosis Pathways. Pharmacol. Res. 2021, 174, 105967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Aisker, G.; Dong, H.; Halemahebai, G.; Zhang, Y.; Tian, L. Urolithin A Suppresses Glucolipotoxicity-Induced ER Stress and TXNIP/NLRP3/IL-1β Inflammation Signal in Pancreatic β Cells by Regulating AMPK and Autophagy. Phytomedicine 2021, 93, 153741. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhou, Q.; Chen, J.; Rexius-Hall, M.L.; Rehman, J.; Zhou, G. Alpha-Enolase Regulates the Malignant Phenotype of Pulmonary Artery Smooth Muscle Cells via the AMPK-Akt Pathway. Nat. Commun. 2018, 9, 3850. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Wang, P.; Qi, J.; Zhang, L.; Gao, C. TLR-Induced NF-ΚB Activation Regulates NLRP3 Expression in Murine Macrophages. FEBS Lett. 2012, 586, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Sun, R.; Liu, L.; Yang, D.; Xiang, Q.; Li, L.; Tang, J.; Qiu, Z.; Peng, W.; Wang, Y.; et al. Tumor Suppressor DRD2 Facilitates M1 Macrophages and Restricts NF-ΚB Signaling to Trigger Pyroptosis in Breast Cancer. Theranostics 2021, 11, 5214–5231. [Google Scholar] [CrossRef]
- Liu, Z.; Gan, L.; Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin Alleviates Inflammasome-Induced Pyroptosis through Inhibiting NF-ΚB/GSDMD Signal in Mice Adipose Tissue. J. Pineal Res. 2017, 63, e12414. [Google Scholar] [CrossRef]
- Mei, L.; Zheng, Y.M.; Song, T.; Yadav, V.R.; Joseph, L.C.; Truong, L.; Kandhi, S.; Barroso, M.M.; Takeshima, H.; Judson, M.A.; et al. Rieske Iron-Sulfur Protein Induces FKBP12.6/RyR2 Complex Remodeling and Subsequent Pulmonary Hypertension through NF-ΚB/Cyclin D1 Pathway. Nat. Commun. 2020, 11, 3527. [Google Scholar] [CrossRef]
- Hosokawa, S.; Haraguchi, G.; Sasaki, A.; Arai, H.; Muto, S.; Itai, A.; Doi, S.; Mizutani, S.; Isobe, M. Pathophysiological Roles of Nuclear Factor KappaB (NF-KB) in Pulmonary Arterial Hypertension: Effects of Synthetic Selective NF-KB Inhibitor IMD-0354. Cardiovasc. Res. 2013, 99, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Huang, J.; Xu, B.; Ou, Z.; Zhang, L.; Lin, X.; Ye, X.; Kong, X.; Long, D.; Sun, X.; et al. Urolithin A Attenuates Memory Impairment and Neuroinflammation in APP/PS1 Mice. J. Neuroinflamm. 2019, 16, 62. [Google Scholar] [CrossRef]
- Lin, J.; Zhuge, J.; Zheng, X.; Wu, Y.; Zhang, Z.; Xu, T.; Meftah, Z.; Xu, H.; Wu, Y.; Tian, N.; et al. Urolithin A-Induced Mitophagy Suppresses Apoptosis and Attenuates Intervertebral Disc Degeneration via the AMPK Signaling Pathway. Free Radic. Biol. Med. 2020, 150, 109–119. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Y.; Su, X.; Zhu, Y.; Liu, L.; Pan, Y.; Zhu, B.; Yang, L.; Gao, L.; Li, M. Activation of AMPK Inhibits PDGF-Induced Pulmonary Arterial Smooth Muscle Cells Proliferation and Its Potential Mechanisms. Pharmacol. Res. 2016, 107, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.; Nilsen, M.; Loughlin, L.; Salt, I.P.; MacLean, M.R. Metformin Reverses Development of Pulmonary Hypertension via Aromatase Inhibition. Hypertension 2016, 68, 446–454. [Google Scholar] [CrossRef]
- Flores, K.; Siques, P.; Brito, J.; Arribas, S.M. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int. J. Mol. Sci. 2022, 23, 6205. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
- Rathinam, V.A.K.; Fitzgerald, K.A. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 2016, 165, 792–800. [Google Scholar] [CrossRef]
- Elizabeth Scott, T.; Kemp-Harper, B.K.; Hobbs, A.J. Inflammasomes: A Novel Therapeutic Target in Pulmonary Hypertension? Br. J. Pharmacol. 2019, 176, 14375. [Google Scholar] [CrossRef]
- Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; et al. Cutting Edge: NF-ΚB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. J. Immunol. 2009, 183, 787–791. [Google Scholar] [CrossRef]
- Hu, Y.; Chi, L.; Kuebler, W.M.; Goldenberg, N.M. Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells 2020, 9, 2338. [Google Scholar] [CrossRef]
- Chen, X.; Wu, R.; Li, L.; Zeng, Y.; Chen, J.; Wei, M.; Feng, Y.; Chen, G.; Wang, Y.; Lin, L.; et al. Pregnancy-Induced Changes to the Gut Microbiota Drive Macrophage Pyroptosis and Exacerbate Septic Inflammation. Immunity 2023, 56, 336–352. [Google Scholar] [CrossRef]
- Wei, Y.; Lan, B.; Zheng, T.; Yang, L.; Zhang, X.; Cheng, L.; Tuerhongjiang, G.; Yuan, Z.; Wu, Y. GSDME-Mediated Pyroptosis Promotes the Progression and Associated Inflammation of Atherosclerosis. Nat. Commun. 2023, 14, 929. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.Y.; Puhach, A.; Frieser, D.; Arunkumar, M.; Lehner, L.; Seeholzer, T.; Garcia-Lopez, A.; van der Wal, M.; Fibi-Smetana, S.; Dietschmann, A.; et al. Human TH17 Cells Engage Gasdermin E Pores to Release IL-1α on NLRP3 Inflammasome Activation. Nat. Immunol. 2023, 24, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Villegas, L.R.; Kluck, D.; Field, C.; Oberley-Deegan, R.E.; Woods, C.; Yeager, M.E.; El Kasmi, K.C.; Savani, R.C.; Bowler, R.P.; Nozik-Grayck, E. Superoxide Dismutase Mimetic, MnTE-2-PyP, Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension, Pulmonary Vascular Remodeling, and Activation of the NALP3 Inflammasome. Antioxid. Redox Signal 2013, 18, 1753–1764. [Google Scholar] [CrossRef]
- Simpson, C.E.; Chen, J.Y.; Damico, R.L.; Hassoun, P.M.; Martin, L.J.; Yang, J.; Nies, M.; Griffiths, M.; Dhananjay Vaidya, R.; Brandal, S.; et al. Cellular Sources of IL-6 and Associations with Clinical Phenotypes and Outcomes in PAH. Eur. Respir. J. 2020, 55, 1901761. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Pei, J.; Wang, X.; Tai, S.; Tang, L.; Hu, X. Gut Bacterial Metabolite Urolithin A Inhibits Myocardial Fibrosis through Activation of Nrf2 Pathway in Vitro and in Vivo. Mol. Med. 2022, 28, 19. [Google Scholar] [CrossRef]
- Tang, L.; Mo, Y.; Li, Y.; Zhong, Y.; He, S.; Zhang, Y.; Tang, Y.; Fu, S.; Wang, X.; Chen, A. Urolithin A Alleviates Myocardial Ischemia/Reperfusion Injury via PI3K/Akt Pathway. Biochem. Biophys. Res. Commun. 2017, 486, 774–780. [Google Scholar] [CrossRef]
- Cui, G.H.; Chen, W.Q.; Shen, Z.Y. Urolithin A Shows Anti-Atherosclerotic Activity via Activation of Class B Scavenger Receptor and Activation of Nef2 Signaling Pathway. Pharmacol. Rep. 2018, 70, 519–524. [Google Scholar] [CrossRef]
- Ma, P.J.; Wang, M.M.; Wang, Y. Gut Microbiota: A New Insight into Lung Diseases. Biomed. Pharmacother. 2022, 155, 113810. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wu, Y.; Lu, D.; Pang, J.; Hu, J.; Zhang, X.; Wang, Z.; Zhang, G.; Wang, J. Polyphenol-Rich Diet Mediates Interplay between Macrophage-Neutrophil and Gut Microbiota to Alleviate Intestinal Inflammation. Cell Death Dis. 2023, 14, 656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jasper, H.; Toan, S.; Muid, D.; Chang, X.; Zhou, H. Mitophagy Coordinates the Mitochondrial Unfolded Protein Response to Attenuate Inflammation-Mediated Myocardial Injury. Redox Biol. 2021, 45, 102049. [Google Scholar] [CrossRef]
- Xu, M.Y.; Xu, J.J.; Kang, L.J.; Liu, Z.H.; Su, M.M.; Zhao, W.Q.; Wang, Z.H.; Sun, L.; Xiao, J.B.; Evans, P.C.; et al. Urolithin A Promotes Atherosclerotic Plaque Stability by Limiting Inflammation and Hypercholesteremia in Apolipoprotein E-Deficient Mice. Acta Pharmacol. Sin. 2024; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Carling, D.; Thornton, C.; Woods, A.; Sanders, M.J. AMP-Activated Protein Kinase: New Regulation, New Roles? Biochem. J. 2012, 445, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Yaku, A.; Inagaki, T.; Asano, R.; Okazawa, M.; Mori, H.; Sato, A.; Hia, F.; Masaki, T.; Manabe, Y.; Ishibashi, T.; et al. Regnase-1 Prevents Pulmonary Arterial Hypertension Through MRNA Degradation of Interleukin-6 and Platelet-Derived Growth Factor in Alveolar Macrophages. Circulation 2022, 146, 1006–1022. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.; Marcos, E.; Parpaleix, A.; Amsellem, V.; Breau, M.; Houssaini, A.; Vienney, N.; Lefevre, M.; Derumeaux, G.; Evans, S.; et al. CCR2/CCR5-Mediated Macrophage-Smooth Muscle Cell Crosstalk in Pulmonary Hypertension. Eur. Respir. J. 2019, 54, 1802308. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, G.; Kirshner, H.F.; Nazo, N.; Ali, S.; Ganapathi, A.; Cumming, I.; Zhuang, Y.; Choi, I.; Warman, A.; Jassal, C.; et al. Single-Cell Analysis Reveals Distinct Immune and Smooth Muscle Cell Populations That Contribute to Chronic Thromboembolic Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2023, 207, 1358–1375. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, L.; Xu, Y.; Li, F.; Wang, T. Disulfiram Attenuates Hypoxia-Induced Pulmonary Hypertension by Inhibiting GSDMD Cleavage and Pyroptosis in HPASMCs. Respir. Res. 2022, 23, 353. [Google Scholar] [CrossRef]
- Cai, D.; Chen, S.Y. Nanoparticle Endothelial Delivery of PGC-1α Attenuates Hypoxia-Induced Pulmonary Hypertension by Attenuating EndoMT-Caused Vascular Wall Remodeling. Redox Biol. 2022, 58, 102524. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Wu, Z.; Jiang, J.; Xu, W.; Yuan, A.; Liao, F.; Ding, S.; Pu, J. Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling. Int. J. Mol. Sci. 2024, 25, 8246. https://doi.org/10.3390/ijms25158246
He X, Wu Z, Jiang J, Xu W, Yuan A, Liao F, Ding S, Pu J. Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling. International Journal of Molecular Sciences. 2024; 25(15):8246. https://doi.org/10.3390/ijms25158246
Chicago/Turabian StyleHe, Xinjie, Zhinan Wu, Jinyao Jiang, Wenyi Xu, Ancai Yuan, Fei Liao, Song Ding, and Jun Pu. 2024. "Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling" International Journal of Molecular Sciences 25, no. 15: 8246. https://doi.org/10.3390/ijms25158246
APA StyleHe, X., Wu, Z., Jiang, J., Xu, W., Yuan, A., Liao, F., Ding, S., & Pu, J. (2024). Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling. International Journal of Molecular Sciences, 25(15), 8246. https://doi.org/10.3390/ijms25158246