Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla
<p>The germination of birch seeds treated with GA<sub>3</sub> and/or paclobutrazol (PAC). (<b>A</b>) Germination percentage (%) of birch seeds treated with GA<sub>3</sub> and/or PAC; (<b>B</b>) Germination energy (%) of birch seeds treated with GA<sub>3</sub> and/or PAC; (<b>C</b>) Germination time (day) of birch seeds treated with GA<sub>3</sub> and/or PAC; (<b>D</b>) Growth of birch seedlings; (<b>E</b>) Hypocotyl height of birch seedling; and (<b>F</b>) Fresh weight of birch seedlings. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 1 Cont.
<p>The germination of birch seeds treated with GA<sub>3</sub> and/or paclobutrazol (PAC). (<b>A</b>) Germination percentage (%) of birch seeds treated with GA<sub>3</sub> and/or PAC; (<b>B</b>) Germination energy (%) of birch seeds treated with GA<sub>3</sub> and/or PAC; (<b>C</b>) Germination time (day) of birch seeds treated with GA<sub>3</sub> and/or PAC; (<b>D</b>) Growth of birch seedlings; (<b>E</b>) Hypocotyl height of birch seedling; and (<b>F</b>) Fresh weight of birch seedlings. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>Transverse sections of 15-day-old birch seedlings germinating under GA<sub>3</sub> and/or PAC. The hypocotyl base was sectioned 15 days after germination. (<b>A</b>) Toluidine blue staining analysis of the differentiation of xylem. xy, xylem cell. Bars = 50 μm; (<b>B</b>) The diameter of the hypocotyl (μm); and (<b>C</b>) The number of xylem cell. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Phenotypic changes of 2-month-old birch seedlings under GA<sub>3</sub> and/or PAC.</p> "> Figure 4
<p>Transverse sections of 2-month-old birch seedlings and the ratio of xylem area to total area under GA<sub>3</sub> and/or PAC treatments. (<b>A</b>–<b>D</b>) GA and/or PAC treatment for 3 days; (<b>E</b>–<b>H</b>) GA and/or PAC treatment for 7 days; (<b>I</b>–<b>L</b>) GA and/or PAC treatment for 14 days; and (<b>M</b>–<b>P</b>) GA and/or PAC treatment for 21 days. (<b>A</b>,<b>E</b>,<b>I</b>,<b>M</b>) GA treatment; (<b>B</b>,<b>F</b>,<b>J</b>,<b>N</b>) GA + PAC treatment; (<b>C</b>,<b>G</b>,<b>K</b>,<b>O</b>) PAC treatment; and (<b>D</b>,<b>H</b>,<b>L</b>,<b>P</b>) water treatment (control). Phloroglucinol–HCl was used to stain lignin to highlight xylem vessels and fibers. Bars = 1 mm; (<b>Q</b>) The ratio of xylem area to total area in birch plants under GA<sub>3</sub>, GA<sub>3</sub> + PAC, PAC and control for 3, 7, 14 or 21 days. Error bars were obtained from multiple replicates of the real-time PCR. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 4 Cont.
<p>Transverse sections of 2-month-old birch seedlings and the ratio of xylem area to total area under GA<sub>3</sub> and/or PAC treatments. (<b>A</b>–<b>D</b>) GA and/or PAC treatment for 3 days; (<b>E</b>–<b>H</b>) GA and/or PAC treatment for 7 days; (<b>I</b>–<b>L</b>) GA and/or PAC treatment for 14 days; and (<b>M</b>–<b>P</b>) GA and/or PAC treatment for 21 days. (<b>A</b>,<b>E</b>,<b>I</b>,<b>M</b>) GA treatment; (<b>B</b>,<b>F</b>,<b>J</b>,<b>N</b>) GA + PAC treatment; (<b>C</b>,<b>G</b>,<b>K</b>,<b>O</b>) PAC treatment; and (<b>D</b>,<b>H</b>,<b>L</b>,<b>P</b>) water treatment (control). Phloroglucinol–HCl was used to stain lignin to highlight xylem vessels and fibers. Bars = 1 mm; (<b>Q</b>) The ratio of xylem area to total area in birch plants under GA<sub>3</sub>, GA<sub>3</sub> + PAC, PAC and control for 3, 7, 14 or 21 days. Error bars were obtained from multiple replicates of the real-time PCR. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Expression analysis of the genes in birch plants under GA<sub>3</sub> and/or PAC. These genes include <span class="html-italic">NAC</span>, <span class="html-italic">MYB</span>, <span class="html-italic">PAL</span>, <span class="html-italic">CESA</span>, and <span class="html-italic">GA20ox</span>. Error bars were obtained from multiple replicates of the real-time PCR. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 5 Cont.
<p>Expression analysis of the genes in birch plants under GA<sub>3</sub> and/or PAC. These genes include <span class="html-italic">NAC</span>, <span class="html-italic">MYB</span>, <span class="html-italic">PAL</span>, <span class="html-italic">CESA</span>, and <span class="html-italic">GA20ox</span>. Error bars were obtained from multiple replicates of the real-time PCR. Lower case letter indicates <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Germination of Birch Seeds
2.2. The Primary Xylem Development of Birch Hypocotyls
2.3. Growth and Secondary Xylem Development of Birch Seedlings
2.4. Gene Selection and Expression Pattern under GA3 Treatment
3. Experimental Section
3.1. Seed Germination and Treatment
3.2. Seedling Growth and Treatment
3.3. Histological Analysis
3.4. Gene Selection and Relative Expression of the SCW Genes by qRT-PCR
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
References
- Nieminen, K.M.; Kauppinen, L.; Helariutta, Y. A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 2004, 135, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Milhinhos, A.; Miguel, C.M. Hormone interactions in xylem development: A matter of signals. Plant Cell Rep. 2013, 32, 867–883. [Google Scholar] [CrossRef] [PubMed]
- Ayano, M.; Kani, T.; Kojima, M.; Sakakibara, H.; Kitaoka, T.; Kuroha, T.; Angeles-Shim, R.B.; Kitano, H.; Nagai, K.; Ashikari, M. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 2014, 37, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.M.; Araujo, W.L.; Fernie, A.R.; Schippers, J.H.; Mueller-Roeber, B. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J. Exp. Bot. 2012, 63, 2769–2786. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, C.; Willige, B.C. Shedding light on gibberellic acid signalling. Curr. Opin. Plant Biol. 2009, 12, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Cembrowska-Lech, D.; Koprowski, M.; Kepczynski, J. Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2·−) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J. Plant Physiol. 2015, 176, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, E.M.; Pinto-Marijuan, M.; Morales, M.; Muller, M.; Munne-Bosch, S.; Garcia, Q.S. Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Plant Biol. 2015, 17, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Mauriat, M.; Moritz, T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J. 2009, 58, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Ragni, L.; Nieminen, K.; Pacheco-Villalobos, D.; Sibout, R.; Schwechheimer, C.; Hardtke, C.S. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 2011, 23, 1322–1336. [Google Scholar] [CrossRef] [PubMed]
- Biemelt, S.; Tschiersch, H.; Sonnewald, U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol. 2004, 135, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Lee, C.; Ye, Z.H. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 2010, 15, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Lee, A.K.; Yoon, H.K.; Park, C.M. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J. Cell Mol. Biol. 2008, 55, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, C.; Liu, Y.; Yang, J.; Huang, L. The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. PLoS ONE 2013, 8, e77275. [Google Scholar] [CrossRef] [PubMed]
- Ohashi-Ito, K.; Oda, Y.; Fukuda, H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 2010, 22, 3461–3473. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Lee, C.; Zhou, J.; McCarthy, R.L.; Ye, Z.H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 2008, 20, 2763–2782. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Kim, W.C.; Han, K.H. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 2009, 60, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Pimenta Lange, M.J.; Lange, T. Gibberellin biosynthesis and the regulation of plant development. Plant Biol. 2006, 8, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Arana, M.V.; Sanchez-Lamas, M.; Strasser, B.; Ibarra, S.E.; Cerdan, P.D.; Botto, J.F.; Sanchez, R.A. Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis. Plant Cell Environ. 2014, 37, 2014–2023. [Google Scholar] [CrossRef] [PubMed]
- Rhie, Y.H.; Lee, S.Y.; Kim, K.S. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid. Plant Biol. 2015, 17, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Harberd, N.P. The role of GA-mediated signalling in the control of seed germination. Curr. Opin. Plant Biol. 2002, 5, 376–381. [Google Scholar] [CrossRef]
- Sauret-Gueto, S.; Calder, G.; Harberd, N.P. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. Plant J. Cell Mol. Biol. 2012, 69, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Wang, L.; Zheng, S.; Xie, J.; Bi, Y. Sucrose-induced hypocotyl elongation of Arabidopsis seedlings in darkness depends on the presence of gibberellins. J. Plant Physiol. 2010, 167, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xu, K.; Wang, Y.Z.; Ren, Y.P.; Gu, S. Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. J. Int. Plant Biol. 2008, 50, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, N.; Uchimura, N.; Sato, Y. Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Protoplasma 2006, 228, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, N.; Gao, C.; Cui, Z.; Sun, D.; Yang, C.; Wang, Y. Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla. PLoS ONE 2014, 9, e87566. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.H.; Zhong, R. Molecular control of wood formation in trees. J. Exp. Bot. 2015, 66, 4119–4131. [Google Scholar] [CrossRef] [PubMed]
- Mitsuda, N.; Ohme-Takagi, M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J. 2008, 56, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Hu, R.; Jiang, J.; Qi, G.; Yang, X.; Zhu, M.; Fu, C.; Zhou, G.; Yi, Z. Molecular cloning and expression analysis of 13 NAC transcription factors in Miscanthus lutarioriparius. Plant Cell Rep. 2014, 33, 2077–2092. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, S.; Wang, Y.; Zhang, X.; Lv, B.; Luo, L.; Xi, D.; Shen, J.; Ma, H.; Ming, F. OsNAC2 encoding a NAC transcription factor affects plant height through mediating the gibberellic acid pathway in rice. Plant J. 2015, 82, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Hussey, S.G.; Mizrachi, E.; Spokevicius, A.V.; Bossinger, G.; Berger, D.K.; Myburg, A.A. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, R.L.; Zhong, R.; Ye, Z.H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 2009, 50, 1950–1964. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Richardson, E.A.; Ye, Z.H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 2007, 19, 2776–2792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Bartley, L.E. Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass. BMC Plant Biol. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Gubler, F.; Kalla, R.; Roberts, J.K.; Jacobsen, J.V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: Evidence for Myb transactivation of a high-pI α-amylase gene promoter. Plant Cell 1995, 7, 1879–1891. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.C.; Kim, J.Y.; Ko, J.H.; Kang, H.; Han, K.H. Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis. Plant Mol. Biol. 2014, 85, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.C.; Ko, J.H.; Kim, J.Y.; Kim, J.M.; Bae, H.J.; Han, K.H. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J. 2013, 73, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.K.; Xie, X.; Lindsay, S.E.; Wang, Y.B.; Masle, J.; Williamson, L.; Leyser, O.; Hetherington, A.M. Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2010, 64, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Deng, L.; Qian, Q.; Xiong, G.; Zeng, D.; Li, R.; Guo, L.; Li, J.; Zhou, Y. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol. Biol. 2009, 71, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.; Mansoori, N.; Li, S.; Lei, L.; Vernhettes, S.; Visser, R.G.; Somerville, C.; Gu, Y.; Trindade, L.M. Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol. 2012, 160, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lei, L.; Gu, Y. Functional analysis of complexes with mixed primary and secondary cellulose synthases. Plant Signal. Behav. 2013, 8, e23179. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Gilles, C.; Lelievre, E.; Viau, L.; Malik-Ghulam, M.; Ricoult, C.; Niebel, A.; Leduc, N.; Limami, A.M. ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: Modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol. Plant 2009, 2, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Sundari, B.K.; Dasgupta, M.G. Isolation of developing secondary xylem specific cellulose synthase genes and their expression profiles during hormone signalling in Eucalyptus tereticornis. J. Genet. 2014, 93, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.A.; Collins, R.E.; Anterola, A.M.; Cochrane, F.C.; Davin, L.B.; Lewis, N.G. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 2003, 64, 1097–1112. [Google Scholar] [CrossRef]
- Calvo, A.P.; Nicolas, C.; Nicolas, G.; Rodriguez, D. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol. Plant. 2004, 120, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; Carrera, E.; Ruiz-Rivero, O.; Garcia-Martinez, J.L. Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J. Plant Physiol. 2010, 167, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Rieu, I.; Ruiz-Rivero, O.; Fernandez-Garcia, N.; Griffiths, J.; Powers, S. J.; Gong, F.; Linhartova, T.; Eriksson, S.; Nilsson, O.; Thomas, S.G.; et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008, 53, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Du, Q.; Chang, M.; Zhang, D. Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp. PLoS ONE 2012, 7, e53116. [Google Scholar] [CrossRef] [PubMed]
- Zentella, R.; Zhang, Z.L.; Park, M.; Thomas, S.G.; Endo, A.; Murase, K.; Fleet, C.M.; Jikumaru, Y.; Nambara, E.; Kamiya, Y.; et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 2007, 19, 3037–3057. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Hanada, A.; Yamauchi, Y.; Kuwahara, A.; Kamiya, Y.; Yamaguchi, S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 2003, 15, 1591–1604. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Wang, Y.; Liu, H.; Hu, P.; Jia, Y.; Zhang, C.; Wang, Y.; Gu, S.; Yang, C.; Wang, C. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. Int. J. Mol. Sci. 2015, 16, 22960-22975. https://doi.org/10.3390/ijms160922960
Guo H, Wang Y, Liu H, Hu P, Jia Y, Zhang C, Wang Y, Gu S, Yang C, Wang C. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. International Journal of Molecular Sciences. 2015; 16(9):22960-22975. https://doi.org/10.3390/ijms160922960
Chicago/Turabian StyleGuo, Huiyan, Yucheng Wang, Huizi Liu, Ping Hu, Yuanyuan Jia, Chunrui Zhang, Yanmin Wang, Shan Gu, Chuanping Yang, and Chao Wang. 2015. "Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla" International Journal of Molecular Sciences 16, no. 9: 22960-22975. https://doi.org/10.3390/ijms160922960
APA StyleGuo, H., Wang, Y., Liu, H., Hu, P., Jia, Y., Zhang, C., Wang, Y., Gu, S., Yang, C., & Wang, C. (2015). Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. International Journal of Molecular Sciences, 16(9), 22960-22975. https://doi.org/10.3390/ijms160922960