Robustness Analysis of Multilayer Infrastructure Networks Based on Incomplete Information Stackelberg Game: Considering Cascading Failures
<p>Single-layer networks are coupled into multilayer networks and a false network is constructed through active link hiding: (<b>a</b>) two single-layer networks, each with six nodes; (<b>b</b>) the multilayer networks formed by coupling the single-layer networks, representing the actual network (AN); (<b>c</b>) rule-based link hiding in the multilayer networks; (<b>d</b>) the generated multilayer false network (FN). In subfigures (<b>a</b>–<b>c</b>), the blue circles represent nodes of layer 1, and the orange circles represent nodes of layer 2; gray solid lines represent intra-layer links, green solid lines represent inter-layer links, and red dashed lines represent hiding links. In subfigure (<b>d</b>), the nodes in FN are painted gray.</p> "> Figure 2
<p>Construction of the payoff matrix for the attacker and defender in MSGM-IICF. Let <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mi>n</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>a</b>) Shows the construction of the defender’s payoff matrix and (<b>b</b>) the construction of the attacker’s payoff matrix. In Step 1, the set of nodes for typical defense and attack strategies is identified. The blue and orange nodes represent the defender’s node selection based on the AN, with blue nodes belonging to layer 1 of the multilayer network and orange nodes belonging to layer 2. The dark gray nodes represent the attacker’s node selection based on the FN. In Step 2, nodes in the AN and FN are removed according to the deletion rule, considering the impact of link hiding. Dashed lines indicate nodes where the attack failed due to link hiding. In Step 3, we consider the set of removed nodes in the AN and FN after accounting for cascading failure effects. In Step 4, the set of nodes identified in Step 3 is removed, obtaining the network after the attack.</p> "> Figure 3
<p>The defender’s equilibrium payoff under different <math display="inline"><semantics> <mi>ε</mi> </semantics></math> for various <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> </mrow> </semantics></math> along with the difference in equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>: (<b>a</b>) the defender’s equilibrium payoff under different <math display="inline"><semantics> <mi>ε</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>; (<b>b</b>) the defender’s equilibrium payoff under different <math display="inline"><semantics> <mi>ε</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; (<b>c</b>) difference in equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>; (<b>d</b>) difference in equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>. In subfigures (<b>c</b>,<b>d</b>), dark blue indicates a small difference, and dark red indicates a large difference.</p> "> Figure 4
<p>Comparison of the attacker’s expected equilibrium payoff and actual equilibrium payoff for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mi>ε</mi> </semantics></math> takes values of 0, 0.15, 0.3, and 0.45. Blue represents the expected equilibrium payoff, while yellow represents the actual equilibrium payoff.</p> "> Figure 5
<p>For <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, the probability of the defender choosing the HDS and the attacker’s equilibrium strategy choice when <math display="inline"><semantics> <mi>ε</mi> </semantics></math> takes values of 0, 0.15, 0.3, and 0.45. The first row shows the probability of choosing the HDS, where lighter colors indicate higher probabilities of choice, while the second row shows the attacker’s equilibrium strategy choice, with light red representing a high-property attack strategy, light blue a low-property attack strategy, and light green #HAS that the defender’s payoff is the same for both the HAS and LAS.</p> "> Figure 6
<p>Relationship between the actual multilayer node-weighted degree in the AN network and the false multilayer node-weighted degree in the FN network. The <span class="html-italic">x</span>-axis represents the multilayer node-weighted degree in the AN and the <span class="html-italic">y</span>-axis represents the multilayer node-weighted degree in the FN. The blue circles represent the change in multilayer node-weighted degree when <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>, green diamonds represent the change when <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, red triangles represent the change when <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math>, and the dashed line is the bisector of the coordinate axes.</p> "> Figure 7
<p>Comparison of the defender’s payoff under various combinations of cascading failures and link hiding factors. Here, <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> represents the defender’s equilibrium payoff without considering cascading failures and link hiding, <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> represents the defender’s equilibrium payoff without considering cascading failures and with a link hiding coefficient of 0.3, and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> represents the defender’s equilibrium payoff considering cascading failures with a tolerance coefficient of 1.5 and a link hiding coefficient of 0.3.</p> "> Figure 8
<p>Tendency graph of the defender’s equilibrium payoff changes when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> under cascading failures. Lighter surface colors indicate higher payoff. The red line on the surface represents the change in the defender’s payoff when attack and defense budget resources are equal <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>m</mi> <mo>=</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>The defender’s equilibrium payoff under different tolerance coefficients <math display="inline"><semantics> <mi>λ</mi> </semantics></math> with cascading failures and the difference in defense equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>: (<b>a</b>) the defender’s equilibrium payoff when <math display="inline"><semantics> <mi>λ</mi> </semantics></math> takes values of 1.1, 1.5, and 1.9; (<b>b</b>) the difference in defense equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, Dark blue indicates a small difference, and dark red indicates a large difference.</p> "> Figure 10
<p>Comparison of the attacker’s expected equilibrium payoff and the actual equilibrium payoff when the cascading failure tolerance coefficient <math display="inline"><semantics> <mi>λ</mi> </semantics></math> takes values of 1.1, 1.5, and 1.9. Blue represents the attacker’s expected equilibrium payoff, while yellow represents the attacker’s actual equilibrium payoff.</p> "> Figure 11
<p>Probability of the defender choosing the HDS and attacker’s equilibrium strategy choice when the cascading failure tolerance coefficient <math display="inline"><semantics> <mi>λ</mi> </semantics></math> takes values of 1.1, 1.5, and 1.9. The first row shows the probability of choosing HDS, with lighter colors indicating higher probabilities of making that choice; the second row shows the attacker’s equilibrium strategy choice, with light red representing the high-property attack strategy, light blue the low-property attack strategy, and light green #HAS indicating that the defender’s payoff is the same for both the HAS and LAS.</p> "> Figure 12
<p>The effect of the cost sensitivity coefficient <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <mi>q</mi> </mrow> </semantics></math> on the defender’s probability of choosing HDS and the attacker’s choice of equilibrium strategy in SSE: (<b>a</b>) probability of choosing HDS under different <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <mi>q</mi> </mrow> </semantics></math> values without considering cascading failures; (<b>b</b>) probability of choosing HDS under different <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <mi>q</mi> </mrow> </semantics></math> values considering cascading failures (in the grids, colors from dark to light represent increasing probabilities of choosing HDS); (<b>c</b>) attacker’s equilibrium strategy choice under different <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <mi>q</mi> </mrow> </semantics></math> values without considering cascading failures; (<b>d</b>) attacker’s equilibrium strategy choice under different <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <mi>q</mi> </mrow> </semantics></math> values considering cascading failures. Light red represents the high-property attack strategy, light blue represents the low-property attack strategy, and light green #HAS indicates that the defender’s payoff is the same for both the HAS and LAS.</p> "> Figure 13
<p>Effect of the load exponent <math display="inline"><semantics> <mi>θ</mi> </semantics></math> on the defender’s probability of choosing the HDS and the attacker’s choice of equilibrium strategy in SSE: (<b>a</b>) probability of choosing the HDS under different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> values without considering link hiding; (<b>b</b>) probability of choosing the HDS under different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> values considering link hiding (in the grids, colors from dark to light represent increasing probabilities of choosing the HDS); (<b>c</b>) attacker’s equilibrium strategy choice under different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> values without considering link hiding; (<b>d</b>) attacker’s equilibrium strategy choice under different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> values considering link hiding. Light red represents the high-property attack strategy choice, light blue represents the low-property attack strategy choice, and light green #HAS indicates cases where both the defender’s payoff and the attacker’s payoff are equal for choosing either the HAS or LAS.</p> "> Figure 14
<p>The defender’s equilibrium payoff under different <math display="inline"><semantics> <mi>ε</mi> </semantics></math> in the US air transportation network: (<b>a</b>) American–United network, (<b>b</b>) American–Delta network; (<b>c</b>) United–Delta network.</p> "> Figure 15
<p>Probability of the defender choosing HDS and the attacker’s equilibrium strategy choice in the American–United network when <math display="inline"><semantics> <mi>ε</mi> </semantics></math> takes values of 0, 0.15, 0.3, and 0.45. The first row shows the probability of choosing HDS, where lighter color indicates a higher probability of that choice; the second row shows the attacker’s equilibrium strategy choice, where light red represents the high-property attack strategy, light blue represents the low-property attack strategy, and light green #HAS indicates that the defender’s payoff is the same for both the HAS and LAS.</p> "> Figure 16
<p>Defender’s equilibrium payoffs under different link hiding methods in the American–United network: (<b>a</b>) represents link hiding in different layers, where MLH-Am+Un denotes simultaneous hiding in both layers, MLH-Am denotes hiding only in the American network layer, MLH-Un denotes hiding only in the United network layer, and MLH_NO denotes no link hiding; (<b>b</b>) represents link hiding methods based on different rules, where MLH denotes rule-based link hiding, MREC denotes random hiding plus random reconnection, and MLH_NO denotes no link hiding.</p> "> Figure 17
<p>Defender’s equilibrium payoff under different tolerance coefficients <math display="inline"><semantics> <mi>λ</mi> </semantics></math> with cascading failures and the difference in defense equilibrium payoff between <math display="inline"><semantics> <mi>λ</mi> </semantics></math> in the American–United network: (<b>a</b>) defender’s equilibrium payoff when <math display="inline"><semantics> <mi>λ</mi> </semantics></math> takes values of 1.1, 1.5, and 1.9; (<b>b</b>) difference in defense equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>; (<b>c</b>) difference in defense equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>.</p> "> Figure 18
<p>Defender’s equilibrium payoff under different <math display="inline"><semantics> <mi>α</mi> </semantics></math> and difference in defense payoff between <math display="inline"><semantics> <mi>α</mi> </semantics></math> in the American–United network for <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>: (<b>a</b>) defender’s equilibrium payoff when <math display="inline"><semantics> <mi>α</mi> </semantics></math> takes values of 0.1, 0.5, and 0.9; (<b>b</b>) difference in defense equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>c</b>) difference in defense equilibrium payoff between <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 19
<p>Probability of the defender choosing the HDS and the attacker’s equilibrium strategy choice when the cascading failure tolerance coefficient <math display="inline"><semantics> <mi>λ</mi> </semantics></math> takes values of 1.1, 1.5, and 1.9 in the American–United network. The first row shows the probability of choosing the HDS, where lighter colors indicate a higher probability of that choice. The second row shows the attacker’s equilibrium strategy choice, where light red represents the high-property attack strategy, light blue represents the low-property attack strategy, and light green #HAS indicates that the defender’s payoff is the same for both the HAS and LAS.</p> "> Figure 20
<p>Probability of the defender choosing the HDS and the attacker’s equilibrium strategy choice when <math display="inline"><semantics> <mi>α</mi> </semantics></math> takes values of 0.1, 0.5, and 0.9 in the American–United network. The first row shows the probability of choosing the HDS, where lighter colors indicate a higher probability of that choice. The second row shows the attacker’s equilibrium strategy choice, where light red represents the high-property attack strategy, light blue represents the low-property attack strategy, and light green #HAS indicates that the defender’s payoff is the same for both the HAS and LAS.</p> "> Figure 21
<p>Impact of different edge weights w on network robustness in the American–United network, measured using the size of LMCC: (<b>a</b>) with link hiding and (<b>b</b>) with link hiding and cascading failures.</p> "> Figure 22
<p>Defender’s payoff under different cost adjustment factors <math display="inline"><semantics> <mi>μ</mi> </semantics></math>. The time step for the dynamic cost model is 10.</p> "> Figure 23
<p>Strategy choices of attacker and defender under different cost adjustment factors <math display="inline"><semantics> <mi>μ</mi> </semantics></math>. The time step for the dynamic cost model is 10. The first row shows the probability of choosing the HDS, while the second row shows the attacker’s equilibrium strategy choice.</p> "> Figure 24
<p>Relationship between tolerance coefficients and network robustness: (<b>a</b>) impact of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> on network robustness in SCA and (<b>b</b>) impact of <math display="inline"><semantics> <mi>τ</mi> </semantics></math> on network robustness under different <math display="inline"><semantics> <mi>α</mi> </semantics></math> values in DCA.</p> ">
Abstract
:1. Introduction
2. Construction of Multilayer False Networks and Cascading Failures
2.1. Description of Multilayer Networks and Multilayer Node-Weighted Degree
2.2. Active Deceptive Link Hiding in Multilayer Networks
2.3. Cascading Failure Model in Multilayer Networks
2.4. Performance Metric for Multilayer Networks
3. MSGM-IICF: Multilayer Network Stackelberg Game Model with Incomplete Information Considering Cascading Failures
3.1. Basic Assumptions
- (1)
- We consider only one attacker and only one defender. The defender acts first, and the attacker observes the defender’s strategy before acting. The game lasts for only one round.
- (2)
- The players are fully rational and tend to choose strategies that result in higher payoffs.
- (3)
- The defender knows the actual network (AN) and the false network (FN), while the attacker only knows the FN intentionally disclosed by the defender and chooses their strategies based on the FN.
- (4)
- Both the attacker and the defender are aware of the effects of cascading failures and follow the same failure rules.
3.2. Cost Model
3.3. Strategies
- (1)
- If is protected, i.e., if , then the node is not deleted.
- (2)
- If is not protected, i.e., if , then:
- -
- If , then is retained.
- -
- If , then the analysis proceeds as follows. According to Equation (5), in order to successfully delete a node, the attacker must pay the cost . The attacker deploys attack resources based on calculated from the FN perspective. The resulting attack intensity may be less than the cost required to delete the node, causing an unsaturated attack. To describe this phenomenon, we define the deletion probability of an unprotected node after being attacked, as shown in Equation (10):
3.4. Payoff Functions and Payoff Matrix
3.5. Solution
4. Experiments on Multilayer Scale-Free Networks
4.1. Analysis of Stackelberg Game Equilibrium Under Link Hiding
4.1.1. Defender’s Equilibrium Payoff
4.1.2. Attacker’s Equilibrium Payoff
4.1.3. Strategy Choices of Attacker and Defender
4.1.4. Impact of Link Hiding on the Multilayer Node-Weighted Degree
4.2. Equilibrium Analysis of Incomplete Information Stackelberg Game Considering Cascading Failures
4.2.1. Defender’s Equilibrium Payoff Under Cascading Failures
4.2.2. Analysis of Defender’s Equilibrium Payoff Characteristics Under Cascading Failures
4.2.3. Changes in the Defender’s Equilibrium Payoff Under Different Tolerance Coefficients
4.2.4. Attacker’s Equilibrium Payoff Under Cascading Failures
4.2.5. Strategy Choices of Attacker and Defender Under Cascading Failures
4.3. Parameter Sensitivity Analysis
4.3.1. Analysis of Cost Sensitivity Coefficient
4.3.2. Analysis of Load Exponent ()
5. Experiments on Real-World Multilayer Networks
5.1. Analysis of Stackelberg Game Equilibrium Under Link Hiding
5.1.1. Defender’s Equilibrium Payoff
5.1.2. Strategy Choices of Attacker and Defender
5.1.3. Comparison with Other Link Hiding Methods
5.2. Equilibrium Analysis of Incomplete Information Stackelberg Game Considering Cascading Failures
5.2.1. Changes in the Defender’s Equilibrium Payoff
5.2.2. Strategy Choices of Attacker and Defender
5.3. Analysis of Edge Weights (w)
5.4. Analysis of Cost Adjustment Factor
5.4.1. Changes in the Defender’s Equilibrium Payoff
5.4.2. Strategy Choices of Attacker and Defender
5.5. Analysis of Tolerance Coefficients
6. Conclusions
- When cascading failures are not considered, link hiding can increase the defender’s payoff and improve network robustness. The fundamental reason for this is the reduction in the multilayer node-weighted degree caused by link hiding.
- With the introduction of cascading failures, the impact of link hiding diminishes and cascading failures become the primary factor influencing network robustness. A higher tolerance coefficient leads to higher defender payoffs and better network robustness.
- When cascading failures are not considered, the cost sensitivity coefficient significantly influences the respective strategy choices of both the attacker and defender. When cascading failures are introduced, the influence of the cost sensitivity coefficient becomes less apparent, which further indicates that cascading failures are the main factor affecting the robustness of multilayer networks. The load exponent in the cascading failure model has a relatively small impact on the equilibrium strategy choice.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ficara, A.; Curreri, F.; Fiumara, G.; De Meo, P.; Liotta, A. Covert Network Construction, Disruption, and Resilience: A Survey. Mathematics 2022, 10, 2929. [Google Scholar] [CrossRef]
- Beikbabaei, M.; Montano, M.; Mehrizi-Sani, A.; Liu, C.C. Mitigating False Data Injection Attacks on Inverter Set Points in a 100% Inverter-Based Microgrid. In Proceedings of the 2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zang, T.; Gao, S.; Liu, B.; Huang, T.; Wang, T.; Wei, X. Integrated fault propagation model based vulnerability assessment of the electrical cyber-physical system under cyber attacks. Reliab. Eng. Syst. Saf. 2019, 189, 232–241. [Google Scholar] [CrossRef]
- Tu, H.; Xia, Y.; Chen, X. Vulnerability analysis of cyber physical systems under the false alarm cyber attacks. Phys. A 2022, 599, 127416. [Google Scholar] [CrossRef]
- Halimi, Z.; Bavafa, A.; Cui, Q. Barriers to Community Connectivity: An Assessment of Reconnecting Communities Pilot Program. In Proceedings of the International Conference on Transportation and Development 2024, Atlanta, GA, USA, 15–18 June 2024; pp. 83–91. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Ma, M.; Szymanski, B.K.; Stanley, H.E.; Gao, J. Network resilience. Phys. Rep. 2022, 971, 1–108. [Google Scholar] [CrossRef]
- Artime, O.; Grassia, M.; De Domenico, M.; Gleeson, J.P.; Makse, H.A.; Mangioni, G.; Perc, M.; Radicchi, F. Robustness and resilience of complex networks. Nat. Rev. Phys. 2024, 6, 114–131. [Google Scholar] [CrossRef]
- Yang, K.; Li, J.; Liu, M.; Lei, T.; Xu, X.; Wu, H.; Cao, J.; Qi, G. Complex systems and network science: A survey. J. Syst. Eng. Electron. 2023, 34, 543–573. [Google Scholar] [CrossRef]
- Artime, O. Multilayer Network Science: From Cells to Societies, 1st ed.; Elements in Structure and Dynamics of Complex Networks; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Aleta, A.; Moreno, Y. Multilayer Networks in a Nutshell. Annu. Rev. Condens. Matter Phys. 2019, 10, 45–62. [Google Scholar] [CrossRef]
- De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 2023, 19, 1247–1262. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Hesarkazzazi, S.; Minaei, A.; Dastgir, A.; Sitzenfrei, R. Using complex network theory for missing data reconstruction in water distribution networks. Sustain. Cities Soc. 2024, 101, 105114. [Google Scholar] [CrossRef]
- Ding, R.; Ujang, N.; Hamid, H.B.; Manan, M.S.A.; Li, R.; Albadareen, S.S.M.; Nochian, A.; Wu, J. Application of Complex Networks Theory in Urban Traffic Network Researches. Netw. Spat. Econ. 2019, 19, 1281–1317. [Google Scholar] [CrossRef]
- Bardoscia, M.; Barucca, P.; Battiston, S.; Caccioli, F.; Cimini, G.; Garlaschelli, D.; Saracco, F.; Squartini, T.; Caldarelli, G. The physics of financial networks. Nat. Rev. Phys. 2021, 3, 490–507. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Jin, L.; Song, M.; Li, Z. A new approach for evaluating node importance in complex networks via deep learning methods. Neurocomputing 2022, 497, 13–27. [Google Scholar] [CrossRef]
- Lin, W.; Xu, L.; Fang, H. Finding influential edges in multilayer networks: Perspective from multilayer diffusion model. Chaos 2022, 32, 103131. [Google Scholar] [CrossRef] [PubMed]
- Artime, O.; De Domenico, M. Percolation on feature-enriched interconnected systems. Nat. Commun. 2021, 12, 2478. [Google Scholar] [CrossRef]
- Osat, S.; Faqeeh, A.; Radicchi, F. Optimal percolation on multiplex networks. Nat. Commun. 2017, 8, 1540. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, L.; Liu, H.; Chen, J.; Zhou, Z. Multiplex network disintegration strategy inference based on deep network representation learning. Chaos 2022, 32, 053109. [Google Scholar] [CrossRef]
- Al Musawi, A.F.; Roy, S.; Ghosh, P. Examining indicators of complex network vulnerability across diverse attack scenarios. Sci. Rep. 2023, 13, 18208. [Google Scholar] [CrossRef]
- Dereich, S.; Mörters, P. Random networks with sublinear preferential attachment: The giant component. Ann. Probab. 2013, 41, 329–384. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, S.; Ge, B.; Xia, B.; Pedrycz, W. Resource allocation among multiple targets for a defender-attacker game with false targets consideration. Reliab. Eng. Syst. Saf. 2021, 211, 107617. [Google Scholar] [CrossRef]
- Hunt, K.; Zhuang, J. A review of attacker-defender games: Current state and paths forward. Eur. J. Oper. Res. 2023, 313, 401–417. [Google Scholar] [CrossRef]
- Peng, R.; Wu, D.; Sun, M.; Wu, S. An attack-defense game on interdependent networks. J. Oper. Res. Soc. 2021, 72, 2331–2341. [Google Scholar] [CrossRef]
- Li, Y.; Tan, S.Y.; Deng, Y.; Wu, J. Attacker-defender game from a network science perspective. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 051102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, Y.; Li, Y.; Wu, J. Which Targets to Protect in Critical Infrastructures—A Game-Theoretic Solution From a Network Science Perspective. IEEE Access 2018, 6, 56214–56221. [Google Scholar] [CrossRef]
- Wang, S.; Sun, J.; Zhang, J.; Dong, Q.; Gu, X.; Chen, C. Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes. Int. J. Crit. Infrastruct. Prot. 2023, 40, 100583. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, S.; Deng, Y.; Wu, J. Stackelberg game in critical infrastructures from a network science perspective. Phys. A 2019, 521, 705–714. [Google Scholar] [CrossRef]
- Qi, G.; Li, J.; Xu, X.; Chen, G.; Yang, K. An attack–defense game model in infrastructure networks under link hiding. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 113109. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z. Research on Robustness of Critical information infrastructure Based on Attack-Defensive Game Model. J. Phys. Conf. Ser. 2021, 1738, 012112. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Zhong, J.; Fu, C.; Sun, Y.; Li, J.; Chen, Z.; Wen, G. Effect of load-capacity heterogeneity on cascading overloads in networks. Chaos 2021, 31, 123104. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. E 2004, 69, 045104. [Google Scholar] [CrossRef]
- Jing, K.; Du, X.; Shen, L.; Tang, L. Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy. Phys. A 2019, 534, 122061. [Google Scholar] [CrossRef]
- Duan, D.; Lv, C.; Si, S.; Wang, Z.; Li, D.; Gao, J.; Havlin, S.; Stanley, H.E.; Boccaletti, S. Universal behavior of cascading failures in interdependent networks. Proc. Natl. Acad. Sci. USA 2019, 116, 22452–22457. [Google Scholar] [CrossRef] [PubMed]
- Dui, H.; Meng, X.; Xiao, H.; Guo, J. Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game. Reliab. Eng. Syst. Saf. 2020, 199, 106919. [Google Scholar] [CrossRef]
- Chaoqi, F.; Yangjun, G.; Jilong, Z.; Yun, S.; Pengtao, Z.; Tao, W. Attack-defense game for critical infrastructure considering the cascade effect. Reliab. Eng. Syst. Saf. 2021, 216, 107958. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M. Evolutionary games on multilayer networks: A colloquium. Eur. Phys. J. B 2015, 88, 124. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Zhang, C.; Zhu, H.; Zeng, S.; Sun, C. Joint optimization of structure and protection of interdependent infrastructure networks. Reliab. Eng. Syst. Saf. 2022, 218, 108163. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J. Stackelberg game under asymmetric information in unmanned aerial vehicle swarm active deception defense: From a multi-layer network perspective. In Proceedings of the 2021 International Conference on Big Data and Intelligent Decision Making (BDIDM), Guilin, China, 23–25 July 2021; pp. 75–79. [Google Scholar] [CrossRef]
- Zeng, C.; Ren, B.; Li, M.; Liu, H.; Chen, J. Stackelberg game under asymmetric information in critical infrastructure system: From a complex network. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083129. [Google Scholar] [CrossRef]
- Motter, A.E.; Lai, Y.C. Cascade-based attacks on complex networks. Phys. Rev. E 2002, 66, 065102. [Google Scholar] [CrossRef]
- Wang, B.; Kim, B.J. A high-robustness and low-cost model for cascading failures. Europhys. Lett. 2007, 78, 48001. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.H.; Sun, H.; Gao, P.; Zhou, T. A limited resource model of fault-tolerant capability against cascading failure of complex network. Eur. Phys. J. B 2008, 62, 101–104. [Google Scholar] [CrossRef]
- Başar, T.; Olsder, G.J. Dynamic Noncooperative Game Theory, 2nd ed.; Classics in Applied Mathematics, No. 23; SIAM: Philadelphia, PA, USA, 1999. [Google Scholar]
- Doe, J.; Smith, J.; Johnson, A. Computing the Optimal Strategy to Commit to. In Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, MI, USA, 11–15 June 2006; pp. 101–110. [Google Scholar] [CrossRef]
- Radicchi, F. Percolation in real interdependent networks. Nat. Phys. 2015, 11, 597–602. [Google Scholar] [CrossRef]
- Bianconi, G.; Radicchi, F. Percolation in real multiplex networks. Phys. Rev. E 2016, 94, 060301. [Google Scholar] [CrossRef]
- Zeng, C.; Ren, B.; Liu, H.; Chen, J. Applying the Bayesian Stackelberg Active Deception Game for Securing Infrastructure Networks. Entropy 2019, 21, 909. [Google Scholar] [CrossRef]
- Fathi, A.E.; Ganji, M.; Boiroux, D.; Bengtsson, H.; Breton, M.D. Intermittent Control for Safe Long-Acting Insulin Intensification for Type 2 Diabetes: In-Silico Experiments. In Proceedings of the 2023 IEEE Conference on Control Technology and Applications (CCTA), Bridgetown, Barbados, 16–18 August 2023; pp. 534–539. [Google Scholar] [CrossRef]
- Ilbeigi, M.; Morteza, A.; Ehsani, R. An Infrastructure-Less Emergency Communication System: A Blockchain-Based Framework. J. Comput. Civ. Eng. 2022, 36, 04021041. [Google Scholar] [CrossRef]
- Ilbeigi, M.; Morteza, A.; Ehsani, R. Emergency Management in Smart Cities: Infrastructure-Less Communication Systems. In Proceedings of the Construction Research Congress 2022, Arlington, VA, USA, 9–12 March 2022; pp. 263–271. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Taghaddos, H.; Zahrai, S.M. Improving Emergency Training for Earthquakes through Immersive Virtual Environments and Anxiety Tests: A Case Study. Buildings 2022, 12, 1850. [Google Scholar] [CrossRef]
- Halimi, Z.; SafariTaherkhani, M.; Cui, Q. A Generalized Framework for Assessing Equity in Ground Transportation Infrastructure: An Exploratory Study. arXiv 2024, arXiv:2409.19018. [Google Scholar] [CrossRef]
Strategy | HAS | LAS |
---|---|---|
HDS | (, ) | (, ) |
LDS | (, | (, ) |
70 | 23 | 18 | 45 | 14 | 17 | 2 | 38 | 36 | 13 | 20 | 20 | 13 | 23 | 4 | |
32.13 | 17.26 | 14.14 | 25.24 | 10.9 | 13.57 | 1.44 | 23.15 | 22.81 | 11.03 | 15.8 | 15.41 | 10.92 | 17.71 | 3.4 | |
18.12 | 13.31 | 10.76 | 16.83 | 8.32 | 9.47 | 1.16 | 17.44 | 15.28 | 8.55 | 11.04 | 10.56 | 8.45 | 12.22 | 2.83 | |
9.53 | 7.24 | 7.01 | 7.5 | 4.32 | 5.94 | 1 | 8.03 | 7.64 | 6.48 | 6.8 | 5.9 | 6.19 | 8.05 | 2.09 |
Network | Layers | N | E |
---|---|---|---|
US Air Transportation | American–Delta | 84 | 700 |
American–United | 73 | 499 | |
United–Delta | 82 | 686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Ji, L.; Li, Y.; Liu, S. Robustness Analysis of Multilayer Infrastructure Networks Based on Incomplete Information Stackelberg Game: Considering Cascading Failures. Entropy 2024, 26, 976. https://doi.org/10.3390/e26110976
Li H, Ji L, Li Y, Liu S. Robustness Analysis of Multilayer Infrastructure Networks Based on Incomplete Information Stackelberg Game: Considering Cascading Failures. Entropy. 2024; 26(11):976. https://doi.org/10.3390/e26110976
Chicago/Turabian StyleLi, Haitao, Lixin Ji, Yingle Li, and Shuxin Liu. 2024. "Robustness Analysis of Multilayer Infrastructure Networks Based on Incomplete Information Stackelberg Game: Considering Cascading Failures" Entropy 26, no. 11: 976. https://doi.org/10.3390/e26110976