Dirac Spatial Search with Electric Fields
<p>Evolution of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> with time <span class="html-italic">j</span> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>right</b>).</p> "> Figure 2
<p>Evolutions of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> with time <span class="html-italic">j</span> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and mass <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math> (<b>left</b>) or <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math> (<b>right</b>).</p> "> Figure 3
<p>Density profiles at time <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>61</mn> </mrow> </semantics></math> corresponding to the first maximum of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> (<b>up</b>) and at time <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>111</mn> </mrow> </semantics></math> corresponding to the first minimum of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> (<b>down</b>) for <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Density profiles at time <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>47</mn> </mrow> </semantics></math> corresponding to the first maximum of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> (<b>up</b>) and time <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>137</mn> </mrow> </semantics></math> corresponding to the first minimum of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> (<b>down</b>) for <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>Density profiles at times <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (<b>up</b>) and <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> (<b>down</b>) for <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>Density contours at time <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>61</mn> </mrow> </semantics></math> corresponding to the first maximum of <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math> and two different initial conditions: <math display="inline"><semantics> <mrow> <msup> <mi>ψ</mi> <mi>L</mi> </msup> <mo>=</mo> <msup> <mi>ψ</mi> <mi>R</mi> </msup> </mrow> </semantics></math> (<b>up</b>) and <math display="inline"><semantics> <mrow> <msup> <mi>ψ</mi> <mi>R</mi> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<b>down</b>).</p> "> Figure 7
<p>Time <span class="html-italic">T</span> for the first maximum of <math display="inline"><semantics> <msubsup> <mrow> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> in function of <math display="inline"><semantics> <msqrt> <mi>N</mi> </msqrt> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The function fitting <span class="html-italic">T</span> for small <span class="html-italic">N</span> is approximately <math display="inline"><semantics> <mrow> <mn>0.96</mn> <msqrt> <mi>N</mi> </msqrt> <mo>−</mo> <mn>1.66</mn> </mrow> </semantics></math> and appears in yellow.</p> "> Figure 8
<p>Renormalised probability <math display="inline"><semantics> <msubsup> <mrow> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> </semantics></math> against time <span class="html-italic">j</span> for <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>Q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mo>Ω</mo> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>30</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>46</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (orange), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>60</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (green) and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>76</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (red), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>90</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (navy blue), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>106</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (brown), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>120</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (cyan), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>180</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (yellow) and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>240</mn> <mn>2</mn> </msup> </mrow> </semantics></math> (purple).</p> ">
Abstract
:1. Introduction
2. Materials and Methods: The Dirac Quantum Walks
2.1. Definition
2.2. Continuum Limit
3. Results: Search with Coulomb Potential
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QW | Quantum Walk; |
DTQW | Discrete Time Quantum Walk. |
References
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill Book: New York, NY, USA, 1965. [Google Scholar]
- Schweber, S.S. Feynman and the visualization of space-time processes. Rev. Mod. Phys. 1986, 58, 449. [Google Scholar] [CrossRef]
- Aharonov, Y.; Davidovich, L.; Zagury, N. Quantum random walks. Phys. Rev. A 1993, 48, 1687. [Google Scholar] [CrossRef]
- Meyer, D.A. From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 1996, 85, 551–574. [Google Scholar] [CrossRef] [Green Version]
- Manouchehri, K.; Wang, J.B. Physical Implementation of Quantum Walks; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Karski, M.; Förster, L.; Choi, J.M.; Steffen, A.; Alt, W.; Meschede, D.; Widera, A. Quantum Walk in Position Space with Single Optically Trapped Atoms. Science 2009, 325, 174. [Google Scholar] [CrossRef] [Green Version]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.F.; Matsuda, N.; Politi, A.; Poulios, K.; Xiao-Qi, Z.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum Walks of Correlated Photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, A.; Cassemiro, K.N.; Potocek, V.; Gabris, A.; Mosley, P.; Andersson, E.; Jex, I.; Silberhorn, C. Photons Walking the Line: A quantum walk with adjustable coin operations. Phys. Rev. Lett. 2010, 104, 050502. [Google Scholar] [CrossRef]
- Huerta Alderete, C.; Singh, S.; Nguyen, N.H.; Zhu, D.; Balu, R.; Monroe, C.; Chandrashekhar, C.; Linke, N.M. Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 2020, 11, 3720. [Google Scholar] [CrossRef] [PubMed]
- Zähringer, F.; Kirchmair, G.; Gerritsma, R.; Solano, E.; Blatt, R.; Roos, C.F. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 2010, 104, 100503. [Google Scholar] [CrossRef] [PubMed]
- Acasiete, F.; Agostini, F.P.; Moqadam, J.K.; Portugal, R. Implementation of quantum walks on IBM quantum computers. Quantum Inf. Process. 2020, 19, 1–20. [Google Scholar] [CrossRef]
- Singh, S.; Alderete, C.H.; Balu, R.; Monroe, C.; Linke, N.M.; Chandrashekar, C. Universal one-dimensional discrete-time quantum walks and their implementation on near term quantum hardware. arXiv 2020, arXiv:2001.11197. [Google Scholar]
- Georgopoulos, K.; Emary, C.; Zuliani, P. Comparison of quantum-walk implementations on noisy intermediate-scale quantum computers. Phys. Rev. A 2021, 103, 022408. [Google Scholar] [CrossRef]
- Shakeel, A. Efficient and scalable quantum walk algorithms via the quantum Fourier transform. Quantum Inf. Process. 2020, 19, 1–26. [Google Scholar] [CrossRef]
- Childs, A. Universal Computation by Quantum Walk. Phys. Rev. Lett. 2009, 102, 180501. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Gosset, D.; Webb, Z. Universal computation by multiparticle quantum walk. Science 2013, 339, 791–794. [Google Scholar] [CrossRef] [Green Version]
- Lovett, N.; Cooper, S.; Everitt, M.; Trevers, M.; Kendon, V. Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 2010, 81, 042330. [Google Scholar] [CrossRef] [Green Version]
- Ambainis, A. Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 2003, 1, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 2007, 37, 210–239. [Google Scholar] [CrossRef]
- Aaronson, S.; Ambainis, A. Quantum search of spatial regions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, MA, USA, 10–13 October 2003; pp. 200–209. [Google Scholar]
- Magniez, F.; Nayak, A.; Roland, J.; Santha, M. Search via quantum walk. SIAM J. Comput. 2011, 40, 142–164. [Google Scholar] [CrossRef] [Green Version]
- Portugal, R. Quantum Walks and Search Algorithms; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ambainis, A. Quantum search algorithms. ACM SIGACT News 2004, 35, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Portugal, R.; Santos, R.A.; Fernandes, T.D.; Gonçalves, D.N. The staggered quantum walk model. Quantum Inf. Process. 2016, 15, 85–101. [Google Scholar] [CrossRef]
- Portugal, R. Staggered quantum walks on graphs. Phys. Rev. A 2016, 93, 062335. [Google Scholar] [CrossRef] [Green Version]
- Abal, G.; Donangelo, R.; Marquezino, F.L.; Portugal, R. Spatial search on a honeycomb network. Math. Struct. Comput. Sci. 2010, 20, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Goldstone, J. Spatial search by quantum walk. Phys. Rev. A 2004, 70, 022314. [Google Scholar] [CrossRef] [Green Version]
- Tulsi, A. Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 2008, 78, 012310. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.G. Faster search by lackadaisical quantum walk. Quantum Inf. Process. 2018, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Grover, L.K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Goldstone, J. Spatial search and the Dirac equation. Phys. Rev. A 2004, 70, 042312. [Google Scholar] [CrossRef] [Green Version]
- Guillet, S.; Roget, M.; Arrighi, P.; Molfetta, G. The Grover search as a naturally occurring phenomenon. arXiv 2019, arXiv:1908.11213. [Google Scholar]
- Patel, A.; Rahaman, M.A. Search on a hypercubic lattice using a quantum random walk. I. Phys. Rev. A 2010, 82, 032330. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.G. Spatial search by continuous-time quantum walk with multiple marked vertices. Quantum Inf. Process. 2016, 15, 1411–1443. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Novo, L.; Roland, J. Optimality of spatial search via continuous-time quantum walks. Phys. Rev. A 2020, 102, 032214. [Google Scholar] [CrossRef]
- Childs, A.M.; Ge, Y. Spatial search by continuous-time quantum walks on crystal lattices. Phys. Rev. A 2014, 89, 052337. [Google Scholar] [CrossRef] [Green Version]
- Osada, T.; Coutinho, B.; Omar, Y.; Sanaka, K.; Munro, W.J.; Nemoto, K. Continuous-time quantum-walk spatial search on the Bollobás scale-free network. Phys. Rev. A 2020, 101, 022310. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Sabri, M.; Portugal, R. Spatial Search on Johnson Graphs by Continuous-Time Quantum Walk. arXiv 2021, arXiv:2108.01992. [Google Scholar]
- Lovett, N.B.; Everitt, M.; Trevers, M.; Mosby, D.; Stockton, D.; Kendon, V. Spatial search using the discrete time quantum walk. Nat. Comput. 2012, 11, 23–35. [Google Scholar] [CrossRef]
- Lovett, N.B.; Everitt, M.; Heath, R.M.; Kendon, V. The quantum walk search algorithm: Factors affecting efficiency. Math. Struct. Comput. Sci. 2019, 29, 389–429. [Google Scholar] [CrossRef] [Green Version]
- Ambainis, A.; Kempe, J.; Rivosh, A. Coins make quantum walks faster. arXiv 2004, arXiv:quant-ph/0402107. [Google Scholar]
- Xue, X.L.; Ruan, Y.; Liu, Z.H. Discrete-time quantum walk search on Johnson graphs. Quantum Inf. Process. 2019, 18, 1–10. [Google Scholar] [CrossRef]
- Di Molfetta, G.; Arrighi, P. A quantum walk with both a continuous-time limit and a continuous-spacetime limit. Quantum Inf. Process. 2020, 19, 1–16. [Google Scholar] [CrossRef]
- Gerritsma, R.; Kirchmair, G.; Zähringer, F.; Solano, E.; Blatt, R.; Roos, C. Quantum simulation of the Dirac equation. Nature 2010, 463, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Arnault, P.; Macquet, A.; Anglés-Castillo, A.; Márquez-Martín, I.; Pina-Canelles, V.; Pérez, A.; Di Molfetta, G.; Arrighi, P.; Debbasch, F. Quantum simulation of quantum relativistic diffusion via quantum walks. J. Phys. A Math. Theor. 2020, 53, 205303. [Google Scholar] [CrossRef] [Green Version]
- Arnault, P.; Debbasch, F. Quantum walks and discrete gauge theories. Phys. Rev. A 2016, 93, 052301. [Google Scholar] [CrossRef] [Green Version]
- Márquez, I.; Arnault, P.; Di Molfetta, G.; Pérez, A. Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks. Phys. Rev. A 2018, 98, 032333. [Google Scholar] [CrossRef] [Green Version]
- Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 2013, 88, 042301. [Google Scholar] [CrossRef] [Green Version]
- Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks in artificial electric and gravitational fields. Phys. A Stat. Mech. Its Appl. 2014, 397, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Arrighi, P.; Facchini, S.; Forets, M. Quantum walking in curved spacetime. Quantum Inf. Process. 2016, 15, 3467–3486. [Google Scholar] [CrossRef] [Green Version]
- Arrighi, P.; Facchini, S. Quantum walking in curved spacetime: (3 + 1) dimensions, and beyond. Quantum Inf. Comput. 2017, 17, 810–824. [Google Scholar]
- Arnault, P.; Debbasch, F. Quantum walks and gravitational waves. Ann. Phys. 2017, 383, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks and non-Abelian discrete gauge theory. Phys. Rev. A 2016, 94, 012335. [Google Scholar] [CrossRef] [Green Version]
- Debbasch, F. Discrete geometry from quantum walks. Condens. Matter 2019, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Arrighi, P.; Nesme, V.; Forets, M. The Dirac equation as a quantum walk: Higher dimensions, observational convergence. J. Phys. A Math. Theor. 2014, 47, 465302. [Google Scholar] [CrossRef] [Green Version]
- Campos, E.; Venegas-Andraca, S.E.; Lanzagorta, M. Quantum tunneling and quantum walks as algorithmic resources to solve hard K-SAT instances. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Vakulchyk, I.; Fistul, M.V.; Qin, P.; Flach, S. Anderson localization in generalized discrete-time quantum walks. Phys. Rev. B 2017, 96, 144204. [Google Scholar] [CrossRef] [Green Version]
- Altshuler, B.; Krovi, H.; Roland, J. Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. USA 2010, 107, 12446–12450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zylberman, J.; Debbasch, F. Dirac Spatial Search with Electric Fields. Entropy 2021, 23, 1441. https://doi.org/10.3390/e23111441
Zylberman J, Debbasch F. Dirac Spatial Search with Electric Fields. Entropy. 2021; 23(11):1441. https://doi.org/10.3390/e23111441
Chicago/Turabian StyleZylberman, Julien, and Fabrice Debbasch. 2021. "Dirac Spatial Search with Electric Fields" Entropy 23, no. 11: 1441. https://doi.org/10.3390/e23111441