Return Probability of Quantum and Correlated Random Walks
Abstract
:1. Introduction
2. Quantum Walk
2.1. Definition
2.2. Return Probability of the Quantum Walk
3. Correlated Random Walks
3.1. Definition
3.2. Return Probability of the Correlated Random Walk
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kac, M. Random walk and the theory of Brownian motion. Am. Math. Mon. 1947, 54, 369–391. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Ceperley, D.; Alder, B. Quantum monte carlo. Science 1986, 231, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Böhm, W. The correlated random walk with boundaries: A combinatorial solution. J. Appl. Probab. 2000, 37, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Kareiva, P.; Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 1983, 56, 234–238. [Google Scholar] [CrossRef]
- Codling, E.A.; Plank, M.J.; Benhamou, S. Random walk models in biology. J. R. Soc. Interface 2008, 5, 813–834. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E. Quantum walks: A comprehensive review. Quantum Inf. Process. 2012, 11, 1015–1106. [Google Scholar] [CrossRef]
- Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 2013, 88, 042301. [Google Scholar] [CrossRef] [Green Version]
- Arnault, P.; Debbasch, F. Quantum walks and discrete gauge theories. Phys. Rev. A 2016, 93, 052301. [Google Scholar] [CrossRef] [Green Version]
- Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 2016, 94, 012335. [Google Scholar] [CrossRef] [Green Version]
- Manighalam, M.; Di Molfetta, G. Continuous time limit of the DTQW in 2D+ 1 and plasticity. Quantum Inf. Process. 2021, 20, 1–24. [Google Scholar] [CrossRef]
- Konno, N. Quantum random walks in one dimension. Quantum Inf. Process. 2002, 1, 345–354. [Google Scholar] [CrossRef]
- Inui, N.; Konno, N.; Segawa, E. One-dimensional three-state quantum walk. Phys. Rev. 2005, 72, 056112. [Google Scholar] [CrossRef] [Green Version]
- Ambainis, A.; Kempe, J.; Rivosh, A. Coins make quantum walks faster. In Proceedings of the SODA’05 Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, BC, Canada, 23–25 January 2005; pp. 1099–1108. [Google Scholar]
- Childs, A.M.; Goldstone, J. Spatial search by quantum walk. Phys. Rev. A 2004, 70, 022314. [Google Scholar] [CrossRef] [Green Version]
- Shenvi, N.; Kempe, J.; Whaley, K.B. Quantum random-walk search algorithm. Phys. Rev. A 2003, 67, 052307. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, T.; Rudner, M.S.; Berg, E.; Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 2010, 82, 033429. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Konno, N.; Obuse, H. Relation between two-phase quantum walks and the topological invariant. Yokohama Math. J. 2020, 64, 1–59. [Google Scholar]
- Cantero, M.J.; Grünbaum, F.; Moral, L.; Velázquez, L. One-dimensional quantum walks with one defect. Rev. Math. Phys. 2012, 24, 1250002. [Google Scholar] [CrossRef]
- Pólya, G. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 1921, 84, 149–160. [Google Scholar] [CrossRef]
- Spitzer, F. Principles of Random Walk; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 34. [Google Scholar]
- Konno, N. Quantum walks and elliptic integrals. Math. Struct. Comput. 2010, 20, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Number 71; Cambridge University Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Štefaňák, M.; Jex, I.; Kiss, T. Recurrence and Pólya number of quantum walks. Phys. Rev. Lett. 2008, 100, 020501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štefaňák, M.; Kiss, T.; Jex, I. Recurrence properties of unbiased coined quantum walks on infinite d-dimensional lattices. Phys. Rev. A 2008, 78, 032306. [Google Scholar] [CrossRef] [Green Version]
- Štefaňák, M.; Kiss, T.; Jex, I. Recurrence of biased quantum walks on a line. New J. Phys. 2009, 11, 043027. [Google Scholar] [CrossRef]
- Xu, X.P. Discrete-time quantum walks on one-dimensional lattices. Eur. Phys. J. B 2010, 77, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Ide, Y.; Konno, N.; Machida, T.; Segawa, E. Return probability of quantum walks with final-time dependence. Quantum Inf. Comput. 2011, 11, 761–773. [Google Scholar] [CrossRef]
- Machida, T. A limit law of the return probability for a quantum walk on a hexagonal lattice. Int. J. Quantum Inf. 2015, 13, 1550054. [Google Scholar] [CrossRef]
- Portugal, R. Quantum Walks and Search Algorithms; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Maximon, L. A generating function for the product of two Legendre polynomials. Norske Vid. Selsk. Forh. Trondheim 1956, 29, 82–86. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiumi, C.; Konno, N.; Tamura, S. Return Probability of Quantum and Correlated Random Walks. Entropy 2022, 24, 584. https://doi.org/10.3390/e24050584
Kiumi C, Konno N, Tamura S. Return Probability of Quantum and Correlated Random Walks. Entropy. 2022; 24(5):584. https://doi.org/10.3390/e24050584
Chicago/Turabian StyleKiumi, Chusei, Norio Konno, and Shunya Tamura. 2022. "Return Probability of Quantum and Correlated Random Walks" Entropy 24, no. 5: 584. https://doi.org/10.3390/e24050584