Local Integral Regression Network for Cell Nuclei Detection †
<p>Data annotation for different learning strategies. (<b>a</b>) The point annotations of nuclei in a histopathology image, in which the green crosses mark the center of each nucleus. (<b>b</b>) The ground truth of a fully supervised learning (FSL) framework can be divided into two parts: discrete object areas (red pixels) and a merged background region (blue pixels). (<b>c</b>) The patch-level annotation procedure for the weakly supervised learning (WSL) framework. A histopathology image is firstly divided into large patches and labeled with the truncated counting indicators. Subsequently, the large patches with the indicator <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> are further gridded into small patches. To reduce the annotation cost, only part of the small patches are randomly chosen and labeled with the truncated counting indicators.</p> "> Figure 2
<p>The architecture of the local integral regression network (LIRNet), in which nine residual blocks and a nonlocal module are separately inserted into the feature extraction layers and the bottom layer of a lightweight U-net.</p> "> Figure 3
<p>Typical results of the FSL framework for nuclei detection on the CA (up) and PSU (down) cell datasets. The F1 scores of our method <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>I</mi> <mi>R</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>2</mn> </msub> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>h</mi> </mrow> </semantics></math> on the two images are <math display="inline"><semantics> <mrow> <mn>0.899</mn> </mrow> </semantics></math> (up) and <math display="inline"><semantics> <mrow> <mn>0.905</mn> </mrow> </semantics></math> (down), respectively. The F1 scores of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>I</mi> <mi>R</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>1</mn> </msub> </semantics></math> on the two images are <math display="inline"><semantics> <mrow> <mn>0.919</mn> </mrow> </semantics></math> (up) and <math display="inline"><semantics> <mrow> <mn>0.912</mn> </mrow> </semantics></math> (down), respectively.</p> "> Figure 4
<p>Typical detection results of ablation study from the MBM cell (first row) and CA cell (second row) datasets. Green, blue, and red circles represent ground truth with correct detection (TP), ground truth without correct detection (FN), and false positive detection (FP), respectively. The F1 score for (<math display="inline"><semantics> <msup> <mi>N</mi> <mo>−</mo> </msup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mrow> <mi>L</mi> <mi>I</mi> <mi>R</mi> </mrow> <mi>f</mi> </msubsup> </semantics></math>), (<math display="inline"><semantics> <msup> <mi>N</mi> <mo>+</mo> </msup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mrow> <mi>P</mi> <mi>E</mi> <mi>R</mi> </mrow> <mi>f</mi> </msubsup> </semantics></math>), (<math display="inline"><semantics> <msup> <mi>N</mi> <mo>+</mo> </msup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mrow> <mi>L</mi> <mi>I</mi> <mi>R</mi> </mrow> <mi>f</mi> </msubsup> </semantics></math>), and (<math display="inline"><semantics> <msup> <mi>N</mi> <mo>+</mo> </msup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mrow> <msub> <mo>ℓ</mo> <mn>1</mn> </msub> <mi>L</mi> <mi>I</mi> <mi>R</mi> </mrow> <mi>f</mi> </msubsup> </semantics></math>) in the first row are <math display="inline"><semantics> <mrow> <mn>0.874</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.806</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.875</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.884</mn> </mrow> </semantics></math>, respectively. The F1 score in the second row are <math display="inline"><semantics> <mrow> <mn>0.798</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.720</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.855</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.856</mn> </mrow> </semantics></math>, respectively. More clearly displayed in color and enlargement.</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) The comparison of detection performance under different non-maximum suppression (NMS) radii in the MBM cell and the CA cell datasets, respectively. (<b>c</b>) Performance comparison with and without data augmentation strategy.</p> ">
Abstract
:1. Introduction
- We propose a novel local integral regression network that allows both fully and weakly supervised learning frameworks for estimating the conspicuous location of each nucleus in histopathology images.
- We creatively design a patch-level annotation method to reduce the annotation cost and explore a weakly supervised learning approach for nuclei detection task.
- The comparative experimental results quantitatively show that the FSL version of the LIRNet achieves a state-of-the-art performance, while the WSL version has exhibited a competitive detection ability with much less annotation cost.
2. Related Work
2.1. Learning-Based Nuclei Segmentation and Counting
2.2. Weakly Supervised Learning
3. Materials and Methods
3.1. Dataset Description
3.2. Dataset Annotation
3.3. Network Architecture of LIRNet
3.4. Loss Function Design
3.4.1. Full Supervision
3.4.2. Weak Supervision
3.5. Nuclei Localization
3.6. Evaluation Metrics
3.7. Training Details and Implementation
4. Results
4.1. Comparison with Counterparts
4.2. Weakly Supervised Learning Results
4.3. Ablation Study
4.3.1. Contribution of Nonlocal Module
4.3.2. Contribution of Local Integral Regression Loss
4.3.3. Contribution of Data Augmentation Strategy
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, A.H.; Sangoi, A.R.; Leung, S.; Marinelli, R.J.; Nielsen, T.O.; Van De Vijver, M.J.; West, R.B.; Van De Rijn, M.; Koller, D. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 2011, 3, 108ra113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Failmezger, H.; Rueda, O.M.; Ali, H.R.; Gräf, S.; Chin, S.F.; Schwarz, R.F.; Curtis, C.; Dunning, M.J.; Bardwell, H.; et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 2012, 4, 157ra143. [Google Scholar] [CrossRef] [PubMed]
- Filipczuk, P.; Fevens, T.; Krzyżak, A.; Monczak, R. Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 2013, 32, 2169–2178. [Google Scholar] [CrossRef]
- Sirinukunwattana, K.; Raza, S.E.A.; Tsang, Y.W.; Snead, D.R.; Cree, I.A.; Rajpoot, N.M. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Gould, S.; Salzmann, M. Deep convolutional neural networks for human embryonic cell counting. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 339–348. [Google Scholar]
- Saha, M.; Chakraborty, C. Her2Net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Trans. Image Process. 2018, 27, 2189–2200. [Google Scholar] [CrossRef]
- Xie, C.; Vanderbilt, C.M.; Grabenstetter, A.; Fuchs, T.J. VOCA: Cell nuclei detection in histopathology images by vector oriented confidence accumulation. In Proceedings of the International Conference on Medical Imaging with Deep Learning, PMLR, London, UK, 8–10 July 2019; pp. 527–539. [Google Scholar]
- Naylor, P.; Laé, M.; Reyal, F.; Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 2018, 38, 448–459. [Google Scholar] [CrossRef]
- Mahmood, F.; Borders, D.; Chen, R.; McKay, G.N.; Salimian, K.J.; Baras, A.; Durr, N.J. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 2019, 39, 3257–3267. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dou, Q.; Chen, H.; Qin, J.; Heng, P.A. SFCN-OPI: Detection and Fine-grained Classification of Nuclei Using Sibling FCN with Objectness Prior Interaction. In Proceedings of the 32th AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Xie, Y.; Xing, F.; Shi, X.; Kong, X.; Su, H.; Yang, L. Efficient and robust cell detection: A structured regression approach. Med. Image Anal. 2018, 44, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Noble, J.A.; Zisserman, A. Microscopy cell counting and detection with fully convolutional regression networks. Comp. Meth. Biomech. Biomed. Eng. 2018, 6, 283–292. [Google Scholar] [CrossRef]
- Guo, Y.; Stein, J.; Wu, G.; Krishnamurthy, A. SAU-Net: A Universal Deep Network for Cell Counting. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Niagara Falls, NY, USA, 7–10 September 2019; pp. 299–306. [Google Scholar]
- Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24 June 2016; pp. 1558–1566. [Google Scholar]
- Xue, Y.; Ray, N.; Hugh, J.; Bigras, G. Cell counting by regression using convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 274–290. [Google Scholar]
- Paul Cohen, J.; Boucher, G.; Glastonbury, C.A.; Lo, H.Z.; Bengio, Y. Count-ception: Counting by Fully Convolutional Redundant Counting. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Qu, H.; Wu, P.; Huang, Q.; Yi, J.; Yan, Z.; Li, K.; Riedlinger, G.M.; De, S.; Zhang, S.; Metaxas, D.N. Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images. IEEE Trans. Med. Imaging 2020, 39, 3655–3666. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Madabhushi, A. An Integrated Region-, Boundary-, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery. IEEE Trans. Med. Imaging 2012, 31, 1448–1460. [Google Scholar] [CrossRef]
- Veta, M.; Pluim, J.P.W.; Van Diest, P.J.; Viergever, M.A. Breast Cancer Histopathology Image Analysis: A Review. IEEE Trans. Biomed. Eng. 2014, 61, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Asif, A.; Rajpoot, N.; Arif, M.; Minhas, F. Correlation Filters for Detection of Cellular Nuclei in Histopathology Images. J. Med. Syst. 2018, 42, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [Google Scholar] [CrossRef]
- Corredor, G.; Wang, X.; Lu, C.; Velcheti, V.; Romero, E.; Madabhushi, A. A watershed and feature-based approach for automated detection of lymphocytes on lung cancer images. In Proceedings of the Medical Imaging 2018: Digital Pathology. International Society for Optics and Photonics, Houston, TX, USA, 10–15 February 2018; Volume 10581, p. 105810R. [Google Scholar]
- Salvi, M.; Molinari, F. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images. Biomed. Eng. Online 2018, 17, 89. [Google Scholar]
- Hou, L.; Nguyen, V.; Kanevsky, A.B.; Samaras, D.; Kurc, T.M.; Zhao, T.; Gupta, R.R.; Gao, Y.; Chen, W.; Foran, D.; et al. Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 2019, 86, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xing, F.; Kong, X.; Su, H.; Yang, L. Beyond classification: Structured regression for robust cell detection using convolutional neural network. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 358–365. [Google Scholar]
- Zhu, R.; Sui, D.; Qin, H.; Hao, A. An extended type cell detection and counting method based on FCN. In Proceedings of the 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, USA, 23–25 October 2017; pp. 51–56. [Google Scholar]
- Raza, S.E.A.; AbdulJabbar, K.; Jamal-Hanjani, M.; Veeriah, S.; Le Quesne, J.; Swanton, C.; Yuan, Y. Deconvolving Convolutional Neural Network for Cell Detection. In Proceedings of the 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 891–894. [Google Scholar]
- Hagos, Y.B.; Narayanan, P.L.; Akarca, A.U.; Marafioti, T.; Yuan, Y. ConCORDe-Net: Cell Count Regularized Convolutional Neural Network for Cell Detection in Multiplex Immunohistochemistry Images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 667–675. [Google Scholar]
- Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 2015, 35, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Blastomere cell counting and centroid localization in microscopic images of human embryo. In Proceedings of the 20th International Workshop on Multimedia Signal Processing (MMSP), Vancouver, BC, Canada, 29–31 August 2018; pp. 1–6. [Google Scholar]
- Moradi Rad, R.; Saeedi, P.; Au, J.; Havelock, J. Cell-Net: Embryonic Cell Counting and Centroid Localization via Residual Incremental Atrous Pyramid and Progressive Upsampling Convolution. IEEE Access 2019, 7, 81945–81955. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2921–2929. [Google Scholar]
- Choe, J.; Shim, H. Attention-based dropout layer for weakly supervised object localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2219–2228. [Google Scholar]
- Singh, K.K.; Lee, Y.J. Hide-and-seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3544–3553. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–1 November 2019; pp. 6023–6032. [Google Scholar]
- Zhang, X.; Wei, Y.; Feng, J.; Yang, Y.; Huang, T.S. Adversarial complementary learning for weakly supervised object localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1325–1334. [Google Scholar]
- Zhang, X.; Wei, Y.; Kang, G.; Yang, Y.; Huang, T. Self-produced guidance for weakly-supervised object localization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 597–613. [Google Scholar]
- Kainz, P.; Urschler, M.; Schulter, S.; Wohlhart, P.; Lepetit, V. You Should Use Regression to Detect Cells. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Tofighi, M.; Guo, T.; Vanamala, J.; Monga, V. Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection. IEEE Trans. Med. Imaging 2019, 38, 2047–2058. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, U.; Polosukhin, I. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: New York, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Zhou, X.; Cheng, Z.; Gu, M.; Chang, F. LIRNet: Local Integral Regression Network for Both Strongly and Weakly Supervised Nuclei Detection. In Proceedings of the International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea, 16–19 December 2020; pp. 945–951. [Google Scholar]
- Neubeck, A.; Van Gool, L. Efficient non-maximum suppression. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 850–855. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kuse, M.; Wang, Y.F.; Kalasannavar, V.; Khan, M.; Rajpoot, N. Local isotropic phase symmetry measure for detection of beta cells and lymphocytes. J. Pathol. Informat. 2011, 2, S2. [Google Scholar] [CrossRef] [PubMed]
- Tofighi, M.; Guo, T.; Vanamala, J.K.; Monga, V. Deep networks with shape priors for nucleus detection. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 719–723. [Google Scholar]
MBM Cells | CA Cells | PSU Cells | |
---|---|---|---|
Distance | 15.22 ± 3.51 | 10.34 ± 6.03 | 12.56 ± 1.48 |
Configuration | 15 | 11 | 13 |
Method | Precision ↑ | Recall ↑ | F1 ↑ | Median Distance ↓ (Pixels) | (Q1, Q3) ↓ (Pixels) |
---|---|---|---|---|---|
SSAE | 0.617 | 0.644 | 0.630 | 4.123 | (2.236, 10) |
LIPSyM | 0.725 | 0.517 | 0.604 | 2.236 | (1.414, 7.211) |
SR-CNN | 0.783 | 0.804 | 0.793 | 2.236 | (1.414, 5) |
SC-CNN | 0.781 | 0.823 | 0.802 | 2.236 | (1.414, 5) |
SP-CNN | 0.803 | 0.843 | 0.823 | NA | NA |
SFCN-OPI | 0.819 | 0.874 | 0.834 | NA | NA |
VOCA | 0.831 | 0.863 | 0.847 | 2.0 * | (1.414, 2.236) * |
TSP-CNN | 0.848 | 0.857 | 0.852 | NA | NA |
LIR-- | 0.854 | 0.850 | 0.852 | 2.236 | (1.414, 3.162) |
LIR- | 0.864 | 0.852 | 0.858 | 2.236 | (1.414, 3.606) |
Method | Precision ↑ | Recall ↑ | F1 ↑ |
---|---|---|---|
SSAE | 0.665 | 0.634 | 0.649 |
SR-CNN | 0.797 | 0.805 | 0.801 |
SC-CNN | 0.821 | 0.830 | 0.825 |
SP-CNN | 0.854 | 0.871 | 0.863 |
TSP-CNN | 0.874 | 0.911 | 0.892 |
LIR-- | 0.875 | 0.871 | 0.873 |
LIR- | 0.869 | 0.893 | 0.881 |
Method | Loss | Number of Labels (Ratio%) | Precision ↑ | Recall ↑ | F1 ↑ | Median Distance (Q1,Q3) ↓ (Pixels) | |
---|---|---|---|---|---|---|---|
Previous work | FSL | 280 (100%) | 0.854 | 0.850 | 0.852 | 2.236 (1.414, 3.162) | |
WSL | 130 (46.4%) | 0.810 | 0.777 | 0.793 | 3.162 (2.236, 5.0) | ||
WSL | 92 (32.9%) | 0.773 | 0.792 | 0.783 | 3.0 (2.236, 5.099) | ||
WSL | 72 (25.7%) | 0.772 | 0.739 | 0.755 | 3.162 (2.0, 5.099) | ||
This paper | FSL | 280 (100%) | 0.864 | 0.852 | 0.858 | 2.236 (1.414, 3.606) | |
WSL | 122 (43.6%) | 0.790 | 0.823 | 0.807 | 2.828 (1.414, 4.472) | ||
WSL | 98 (35.0%) | 0.809 | 0.791 | 0.800 | 2.236 (1.414, 4.123) | ||
WSL | 74 (26.4%) | 0.730 | 0.830 | 0.777 | 2.828 (1.414, 6.0) | ||
WSL | 49 (17.5%) | 0.747 | 0.758 | 0.753 | 3.0 (2.0, 5.385) |
Method | Loss | Number of Labels (Ratio%) | Precision ↑ | Recall ↑ | F1 ↑ | Median Distance (Q1,Q3) ↓ (Pixels) |
---|---|---|---|---|---|---|
FSL | 129 (100%) | 0.867 | 0.893 | 0.880 | 2.828 (2.000, 4.123) | |
WSL | 86 (66.7%) | 0.893 | 0.812 | 0.825 | 3.162 (2.0, 5.0) | |
WSL | 61 (47.3%) | 0.808 | 0.798 | 0.803 | 3.0 (2.0, 5.0) | |
WSL | 51 (39.5%) | 0.707 | 0.738 | 0.722 | 3.606 (2.236, 6.083) |
Dataset | Network Variants | Precision ↑ | Recall ↑ | F1 ↑ |
---|---|---|---|---|
MBM cells | (, ) | 0.877 | 0.874 | 0.875 |
(, ) | 0.905 | 0.718 | 0.801 | |
(, ) | 0.885 | 0.873 | 0.879 | |
(, ) | 0.867 | 0.893 | 0.880 | |
CA cells | (, ) | 0.862 | 0.811 | 0.836 |
(, ) | 0.848 | 0.759 | 0.801 | |
(, ) | 0.854 | 0.850 | 0.852 | |
(, ) | 0.864 | 0.852 | 0.858 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Gu, M.; Cheng, Z. Local Integral Regression Network for Cell Nuclei Detection. Entropy 2021, 23, 1336. https://doi.org/10.3390/e23101336
Zhou X, Gu M, Cheng Z. Local Integral Regression Network for Cell Nuclei Detection. Entropy. 2021; 23(10):1336. https://doi.org/10.3390/e23101336
Chicago/Turabian StyleZhou, Xiao, Miao Gu, and Zhen Cheng. 2021. "Local Integral Regression Network for Cell Nuclei Detection" Entropy 23, no. 10: 1336. https://doi.org/10.3390/e23101336