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ABSTRACT 

Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers 

and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, 

we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained 

histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation 

filters have been widely used in object detection and tracking applications but their strength has not 

been explored in the medical imaging domain up till now. Our experimental results show that the 

proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like 

deep learning approaches, the proposed filters do not require engineering of image features as they 

can operate directly on histopathology images without significant preprocessing. However, unlike 

deep learning methods, the large-margin correlation filters developed in this work are interpretable, 

computationally efficient and do not require specialized or expensive computing hardware.  

Availability: A cloud based webserver of the proposed method and its python implementation 

can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist. 

Keywords: Correlation filters, Kernelized correlation filters, Histopathology images, Cell 

detection, Nuclei detection. 

Introduction 

Nuclei detection in histopathology images is vital for assessment of tumors and cancers. Analysis 

of various properties of nuclei is an effective way to understand different stages of tumor progression 
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[1]–[3]. Computerized methods have been rapidly evolving in the area of digital pathology to replace 

manual annotation for diagnostic assessment of histopathology images [4]. An automated system 

can identify and classify various types of cells in pathology images. Such systems offer substantial 

advantages over manual annotation in terms of accuracy, repeatability, time, and cost. However, 

detection of cells in stained histopathology images is a challenging task (see Fig. 1). For instance, 

complex tissue structures, nuclear pleomorphism (heterogeneous chromatin distribution and 

irregular boundaries), and variability in nuclei shape, size, and texture during nuclei life cycle 

complicate nuclei detection. Differences in slides preparation and image acquisition techniques 

along with variability in the staining process also pose difficulties in accurate automated detection 

of cells in histology images [4], [5]. 

Automated detection of cells in digital pathology images has gained immense interest from the 

research community over the last few decades. Existing work in the field can be broadly classified 

into two categories: image processing based techniques and machine learning based methods. Most 

of the work in literature has focused on image processing based segmentation techniques [6], [7]. 

Wang et al. proposed a semi-automatic segmentation method for detection of thyroid nuclei in 

feulgen stained histopathology images [7]. Their method comprises three major steps: searching of 

closed rough contours using a graph cut method, refinement of contours to get segments and finally 

manual removal of incorrect segments by a pathologist. Chomphuwiset et al. employed the Hough-

transform for detection of nuclei in H&E stained liver histology images [8]. However, their 

technique assumes spherical shaped nuclei and thus elongated shaped lymphocytes are not detected 

correctly. Yuan et al. proposed intensity thresholding followed by morphological operations, 

distance transform and watershed segmentation for nuclei detection [9]. However, this method is 

not suitable for segmenting nuclei in data containing large number of overlaps [3]. The technique 

by Jain et al. implements a region-based segmentation method followed by boundary-based cell 

detection technique to cope with the problem of irregular-shaped nuclei [10]. Their region-based 

segmentation involves thresholding and the use of watershed algorithm whereas boundary-based 

cell detection is done using an active contour model (ACM). Kumar et al. proposed a k-means 

segmentation algorithm for detection of cells in biopsy images of various tissues [6]. This method, 

however, is good only at detecting spherical shaped nuclei and does not work well for more complex 

morphologies. 

A number of machine learning techniques have also been developed for detection of nuclei in 

histology images [3], [11], [12]–[15]. Recent approaches in this domain have focused on deep 

learning algorithms. These methods typically rely on a deep architecture of multi-layered neural 

network to automatically learn features from large number of training examples [16]. Ciresan et al. 

deployed a deep neural network (DNN) as a pixel classifier to differentiate between mitotic and non-

mitotic nuclei in breast cancer histopathology images [11]. Xie et al. proposed structural regression 

convolution neural network (CNN) for cells detection wherein strong response regions in the 

resulting proximity map indicate centroids of nuclei [17]. Xu et al. proposed a stacked sparse 

autoencoder strategy to learn high level features from patches of breast histopathology images and 

then classify these patches as nuclear or non-nuclear [18]. Recently, Sirinukunwattana et al. 

introduced locality sensitive deep learning approach for nuclei detection in H&E stained colorectal 

adenocarcinoma histology images. In this approach, a spatially constrained CNN is first employed 

to generate a probability map for a given input image using a sliding window strategy. Peak detection 

is then used for detection of nuclei in image patches [3]. 

Both machine learning and image processing or segmentation methods come with their own set 

of limitations. Segmentation techniques do not perform well in cases involving overlapping and 

clustered nuclei. The literature shows that significant attempts have been made to overcome these 

issues [19]–[27]. However, these problems still persist when dealing with images containing large 

number overlapping cells [4]. Another major issue associated with these methods is that most of 

these methods model nuclei as round or circular objects. This limits their applicability in cases 

involving irregularly shaped or elongated cells. Furthermore, image processing techniques require 

significant empirical tuning and hand-crafting. Deep learning approaches, on the other hand, do not 

rely on hand-crafted features and can be readily deployed for detection in datasets of complex images 
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containing overlaps and variable shaped nuclei. However, these methods require a large amount of 

training data [16]. Computation requirements of these approaches are also large and they require 

expensive computational systems for implementation. Due to their black box nature, it is nearly 

impossible to understand the reasoning behind a prediction from these methods.  

In this paper, we propose a novel correlation filter based approach for automated nuclei detection 

in histopathology images. Our proposed correlation filter based approach for nuclei detection is not 

only fast and simple but also requires only a small number of training images. This is due to the 

dependence of correlation filters on a very small set of parameters in comparison to deep learning 

techniques [28]–[30]. Like deep learning approaches, these filters are flexible and can detect 

complex or arbitrarily shaped nuclei without requiring hand-crafted features. Furthermore, the 

template for a trained correlation filter can be easily visualized to see the type of patterns the filter 

has learned. Our results show that these filters offer state of the art prediction performance in 

comparison to other existing techniques. 

The rest of the paper is organized as follows. Section 2 gives details of the implementation of 

the proposed scheme together with the theory behind correlation filters. Section 3 presents the results 

and discussion while conclusions are given in section 4. 

 

 
                                        (a) 

 
                         (b) 

Fig. 1. Visualization of Cells in Histopathology Image (a) H&E stained Histopathology Image. (b) Encircled Nuclei in 

Histopathology image to be detected. Notice the large variation in morphologies across different nuclei. 

Materials and Methods 

Mathematical Formulation of Correlation Filters 

A Correlation filter behaves as a classifier which learns target patterns in annotated training 

images and then finds similar patterns in any test image using correlation. These filters employ Fast 

Fourier Transform (FFT) for performing correlation operations in the frequency domain which 

greatly reduces the computational cost of object detection [28]. Correlation filters have been widely 

used in object detection and tracking [28]–[33]. However, their use in the medical imaging domain 

has been very limited.  

The fundamental principle behind the design of correlation filters is that the location(s) of target 

object(s) in an input image corresponds to peaks in the output of correlation of the input image with 

a template of the target object. A correlation filter is, in essence, a template of the target object 

obtained by training over a set of training images. Examples of correlation filters include 

Unconstrained Minimum Average Correlation Energy (UMACE) [34], Average of Synthetic Exact 

Filters (ASEF) [29] and Minimum Output Sum of Squared Error (MOSSE) [28], etc. MOSSE, due 

to built-in regularization, outperforms other correlation filters especially with small training data 

sets. Henriques et al. have recently published their work on kernelized correlation filters (KCF) for 

high speed tracking [30]. KCF uses non-linear kernels which allows for accurate detection of more 

complicated objects in comparison to the linear MOSSE filter. 

Different correlation filter techniques differ, primarily, in the way they utilize training data for 

constructing the filter [29]. However, all these algorithms require a set of training images and their 
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corresponding target images. A target image corresponding to a training image shows the locations 

of the target objects in the training image as peaks. An example of an input image can be seen in 

Fig. 1 together with annotations of known nuclei locations. A correlation filter can be conceptually 

visualized as an image whose correlation output with an input image is as close to the corresponding 

target image as possible [28]. Given a correlation filter 𝑯, the correlation response 𝑹 for an image 

𝑭 in the Fourier domain can be written as follows [35]:                                                                                                                                                                                                    

𝑹 = 𝑯∗ ⊙ 𝑭. (1) 
 
Here, capital letters denote the Fourier domain representation, ℱ (∙), of their corresponding spatial 

domain images, ⊙ represents element-wise multiplication and ∗ indicates the complex conjugate. 

The filter 𝑯 can be obtained from training such that the correlation response of the filter for a given 

training image 𝑭 is as close to its target image 𝑮 as possible. In this study, we employ Minimum 

Output Sum of Squared Error (MOSSE) [28] and radial basis function (RBF) kernelized correlation 

filter (KCF) [30] for cells detection in histopathology images. 

Minimum Output Sum of Squared Error (MOSSE) Filter 

The MOSSE filter was proposed by Bolme et al. for high-speed object tracking and pedestrian 

detection [28], [30]. It finds an optimal regularized correlation filter 𝑯, that minimizes the sum of 

squared error between the actual and the desired correlation responses. Given 𝑁 training images 𝒇𝒊, 

𝑖 = 1 … 𝑁, and their corresponding target images 𝒈𝒊, the learning problem of MOSSE takes the 

form: 

𝑯∗ = argmin
𝑯∗

[∑‖𝑭𝒊 ⊙ 𝑯∗ − 𝑮𝒊‖
2

𝑁

𝑖=1

+
𝜆

2
‖𝑯‖2], 

(2) 

where 𝜆 > 0 represents the regularization parameter and ‖∙‖ indicates the norm of an argument 

matrix. As stated earlier, the filter is chosen such that it minimizes the error between the desired 

correlation response 𝑮𝒊 and the actual correlation output 𝑹𝒊 = 𝑭𝒊 ⊙ 𝑯∗ for all training images. The 

regularization of the filter involves reducing the norm of the filter and it ensures filter stability 

especially in cases in which the number of training examples is small. The regularization parameter 

𝜆 controls the trade-off between the empirical error and regularization terms. The above optimization 

problem can be solved analytically and the closed form expression for the filter can be written as 

follows with the use of element-wise division operator ⊘: 

𝑯∗ = (∑ 𝑮𝒊 ⊙ 𝑭𝒊
∗

𝑁

𝑖=1

) ⊘ (∑ 𝑭𝒊 ⊙ 𝑭𝒊
∗

𝑁

𝑖=1

+ 𝜆). 
(3) 

Kernelized Correlation Filter (KCF) 

Henriques et al. recently presented a non-linear extension of the MOSSE correlation filter for 

object tracking in videos and showed, via empirical results, that the non-linear or kernelized version 

of MOSSE is more accurate in tracking objects with complex patterns or morphologies [30]. Their 

derivation of the KCF follows a signal processing approach. In this paper, we present a 

complementary but simpler derivation of the KCF from a machine learning standpoint based on the 

Representer theorem [36], [37] and the kernel trick [38], [39]. 

Based on equations 1 and 3, the response 𝑹 of the MOSSE filter in the Fourier domain for a 

given test image 𝑭 can be written in matrix form as: 

𝑹 = 𝑯∗ ⊙ 𝑭 = (∑ 𝑮𝒊 ⊙ 𝑭𝒊
∗

𝑁

𝑖=1

) ⊘ (∑ 𝑭𝒊 ⊙ 𝑭𝒊
∗

𝑁

𝑖=1

+ 𝜆) ⊙ 𝑭, (4) 
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𝑹 = (∑ 𝑮𝒊 ⊙ 𝑭𝒊
∗ ⊙ 𝑭

𝑁

𝑖=1

) ⊘ (∑ 𝑭𝒊 ⊙ 𝑭𝒊
∗

𝑁

𝑖=1

+ 𝜆). (5) 

 

In accordance with the kernel trick and the Mercer theorem [40], the correlation inner-products 

(𝑭𝒊
∗ ⊙ 𝑭 and 𝑭𝒊 ⊙ 𝑭𝒊

∗) in equation 5 can be replaced by kernel correlation functions as follows:    

 

𝑹 = (∑ 𝑮𝒊 ⊙ 𝑲𝑭𝑭𝒊

𝑁

𝑖=1

) ⊘ (∑ 𝑭𝒊 ⊙ 𝑭𝒊
∗

𝑁

𝑖=1

+ 𝜆) = ∑ 𝑲𝑭𝑭𝒊 ⊙ (𝑮𝒊 ⊘ (∑ 𝑲𝑭𝒊𝑭𝒊 + 𝜆

𝑁

𝑖=1

))

𝑁

𝑖=1

= ∑ 𝑲𝑭𝑭𝒊 ⊙ 𝜶𝒊

𝑁

𝑖=1

. 

(6) 

 

Here, 𝑲𝑭𝑭𝒊 = 𝑭 ⊙ 𝑭𝒊
∗ is the kernel correlation of the test image 𝑭 and the 𝑖𝑡ℎ training image 𝑭𝒊

∗ 

and  𝑲𝑭𝒊𝑭𝒊 = 𝑭𝒊 ⊙ 𝑭𝒊
∗ is the kernel auto-correlation of 𝑭𝒊. The multiplicative factor 𝜶𝒊 = 𝑮𝒊 ⊘

(∑ 𝑲𝑭𝒊𝑭𝒊 + 𝜆𝑁
𝑖=1 ) is a term which is solely dependent on training image 𝑖. Any valid kernel function 

can be used for 𝑲 and the introduction of these kernel functions allows for extension of the linear 

filter to non-linear one in an implicit manner. With a linear kernel function, 𝑲𝑭𝑭𝒊 = 𝑭 ⊙ 𝑭𝒊
∗, the 

kernelized correlation filter is the same as the linear MOSSE filter. Other possible kernels include 

the Radial Basis Function (RBF) kernel given below [30]. 

 

𝑲𝒓𝒃𝒇
𝑭𝑭𝒊 = ℱ (𝑒𝑥𝑝 (−

1

𝜎2
(‖𝒇‖2 + ‖𝒇𝒊‖

2 − 2ℱ−1(𝑭 ⊙ 𝑭𝒊
∗)))) (7) 

 

In this kernel, the hyper-parameter 𝜎 controls the spread of the RBF and can be tuned for optimal 

performance and the 𝑒𝑥𝑝 operation is performed in an element-wise manner. It is important to note 

that the kernels in the KCF are in the Fourier domain and that a kernel function returns a matrix 

showing the correlation of its input arguments in an implicit Hilbert space. It is also interesting to 

observe that the response of the KCF is a manifestation of the Representer theorem. Specifically, 

since the objective function of the MOSSE filter is a regularized empirical risk function, the output 

response of the filter can be written as a linear combination ∑ 𝑲𝑭𝑭𝒊 ⊙ 𝜶𝒊
𝑁
𝑖=1  of kernel correlations 

evaluated on training images. This theoretical link renders several useful properties to Kernelized 

correlation filters. It shows that the Kernelized Correlation Filters are, in essence, a large margin 

classifier that operates directly over images without the need of feature engineering. It is also 

important to note that the KCF also optimizes the same objective function as a MOSSE filter by 

minimizing the empirical error between the target and filter output for all training examples and 

performing effective regularization. It also extends the applicability of correlation filters to 

multispectral images in which each band can have its own kernel which can then be combined via 

various kernel operations [41]. It also allows for multi-domain fusion of medical images and implicit 

feature transformations. Evaluating the kernels in the frequency domain through the Fast Fourier 

Transform (FFT) reduces computational complexity significantly without any loss in accuracy [42]. 

Equations 3, 4 and 6 form the core of our proposed scheme. 

Proposed Method 

The details of individual steps in the proposed method is given below. 

Histopathology Image dataset and construction of target images 

The dataset used in this study consists of 100 hematoxylin & eosin (H&E) stained histopathology 

images of colorectal adenocarcinomas which has been organized, used and published online by 

Sirinukunwattana et al. [3]. All these images are 500 x 500 pixels in size and have been cropped 
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from non-overlapping areas of 10 whole-slide images that were obtained from nine patients. Each 

image in the dataset is provided with annotations of nuclei locations as shown in Fig. 1 for a 

representative image. There are a total of 29, 756 nuclei in the dataset. Note that the dataset contains 

complex and wide variety shapes of nuclei where overlap is also present. We have used this data set 

as it allows us to compare our technique directly with the current state of the art techniques in the 

field which have already been benchmarked on this data set by Sirinukunwattana et al. 

For construction of a correlation-filter, we need 𝑁 training images 𝒇𝒊, 𝑖 = 1 … 𝑁, and their 

corresponding target images 𝒈𝒊. We constructed a target image, 𝒈𝒊, for each given image by placing 

a Gaussian of size 𝜎 = 2 at all annotated cell locations (see Fig. 2). This Gaussian blurring helps 

avoid ringing artifacts associated with frequency domain manipulation [43], [44]. 

Pre-processing 

An important step in design of correlation filters is the preprocessing of images. First, the 

hematoxylin channel is extracted from the images for further analysis using a Python package based 

on color deconvolution [45]. This is because the hematoxylin dye is basic in nature and binds to the 

acidic DNA or RNA in the nucleus during the staining process. Second, a log transformation is 

applied to reduce the effect of shadows and lightening variations. Third, pixel values are normalized 

to have a mean of 0.0 and norm of 1.0 to give images a consistent intensity [28], [29]. Edge-padding 

is then performed in which all images are padded with additional pixels on all sides. Finally, the 

image is multiplied by a Tukey window which reduces pixel values near the edges to zero while 

preserving all other pixels values in their original form [46]. Edge-padding followed by Tukey 

windowing helps cope with edge artifacts associated with FFT operations used in correlation filter 

design [28], [29]. These additional padded pixels are removed after the filter response has been 

calculated. Fig. 2 shows the original training image along with its pre-processed version and the 

desired target image. 

Correlation filter construction and detection 

After preprocessing of images and their corresponding targets, we designed MOSSE and RBF 

correlation filters based on equations 3, 4 and 6. The filter response for an input image can be 

obtained by equation 6 and converted to the spatial domain by taking inverse FFT. Peaks in the 

spatial domain response image are interpreted as putative nuclei locations. The hyper-parameters 𝜆 

and 𝜎 of the correlation filters are tuned based on statistical performance metrics over training 

images only. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 2. An Illustration of Preprocessing Step. (a) Histopathology Image. (b) Preprocessed Hematoxylin (Featured) Image. 

(c) Preprocessed Desired Target Image  
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Performance Evaluation and Parameter Tuning 

Precision, Recall and F1 score are used as performance metrics in this work to assess the 

performance of correlation filter based detection and to carry out comparison with other detection 

approaches [47]. We followed the same two-fold cross-validation procedure for performance 

evaluation as done in [3]. Locations of peaks in the response image are compared to their known 

locations for images in the testing fold using a 6-pixel distance criterion and Precision, recall and 

F1-score are averaged over all test images to get averaged statistics which describe the quantitative 

performance of correlation filter based detection.   

Results and Discussion 

Table 1 shows the results for two-fold cross validation results of correlation filter based detection 

along with other recently published detection algorithms [3]. Note that the evaluation protocol of 

our approach is the same as other comparative methods which leads to a fair comparison. 

Table 1: 2-fold Cross Validation Results of Detection Approaches. 

Detection Approach Precision Recall F1 score 

Baseline 0.45 0.74 0.55 

RBF Correlation Filter 0.83 0.86 0.84 

Linear MOSSE Filter 0.76 0.88 0.81 

SC-CNN (M = 1) [3] 0.76 0.83 0.79 

SC-CNN (M = 2) [3] 0.78 0.82 0.80 

CP-CNN [3] 0.70 0.69 0.69 

SR-CNN [22] 0.78 0.80 0.79 

SSAE [18] 0.62 0.64 0.63 

LIPSyM [48] 0.72 0.52 0.60 

CRImage [9] 0.66 0.46 0.54 

 

As a baseline, we considered an optimal-threshold based binarization of the Hemotoxylin image 

which gives an F1 score of 0.55. Since the Hemotoxylin dye binds DNA, therefore the Hemotoxylin 

component of the input image shows a high-valued response at locations corresponding to nuclei. 

The baseline corresponds to the results obtained if no filter learning is performed and the 

Hemotoxylin component of the input image is directly used for detection of nuclei. Our results show 

that both linear (MOSSE) and RBF correlation (KCF) filters give significantly improvement in 

prediction performance over the baseline. 

It is also evident form Table 1 that correlation filter based approaches outperform all other 

recently published approaches for detection of nuclei in the given histopathology images. Here, we 

see that F1 score of our proposed filters has surpassed deep learning and segmentation approaches. 

In comparison to the state of the art approaches such as SC-CNN and SR-CNN, our KCF based 

approach offers a substantial improvement in prediction accuracy. Our proposed algorithm does not 

require feature or process engineering needed by image processing based techniques or regular 

machine learning methods as it operates directly on the Hemotoxylin image. RBF KCF offers the 

highest sensitivity and precision scores which clearly shows that it can detect nuclei with complex 

morphologies better than all other techniques. The proposed scheme is significantly better than deep 

learning techniques in terms of resource requirements and computational complexity as well. It does 

not require expensive hardware for training or testing. Cross-validation over a standard Core i3 

system with 6GB RAM requires only 18s for the linear and 54s for the RBF KCF. Furthermore, in 

contrast to existing deep learning methods, the proposed scheme operates over complete images and 

not over patches. This eliminates the need for window-based processing.  



8 

The template learned by the MOSSE filter can be visualized as well which gives us some insight 

into the working of the algorithm. The trained filter zoomed-in to capture essential details of the 

template is shown in Fig. 3. Its symmetric shape with a central round region surrounded by a band 

resembles an ideal cell with the nucleus in the middle. However, it does not fully conform to any 

specific cellular morphology and appears to be a combination of different morphologies. This figure 

also illustrates the interpretability and intuitive nature of the proposed filter.  

A qualitative analysis of the proposed approach is shown in Fig. 4. It shows various input images 

together with their target and output images. It can be clearly seen that the proposed scheme can 

detect nuclei in input images of varying nuclei densities and morphologies. The top 3 rows show 

images on which the precision and recall of the KCF is high whereas the bottom row shows an image 

in which the KCF, along with other detection methods used in comparison, fail to detect cells in the 

region which has issues due to the staining process. This highlights the limitation of all nuclei 

detection approaches. 

We also experimented with changing the amount of training data for the Kernelized correlation 

filter. This was done by changing the cross-validation strategy from 2-fold to leave-one-image-out 

in which the filter is trained on all available images except for one which is held out for training. 

This process is repeated for all training images and the performance statistics for individual images 

are then averaged. We noticed only a small improvement in prediction accuracy: the average F1 

score improved from 0.84 to 0.86. This clearly shows that the proposed scheme is stable with respect 

to changes in data and that it does not need large amounts of training data to deliver optimal 

performance. 

Conclusions 

In this study, we have presented a correlation filter based approach for automated detection of 

cells and nuclei in stained histopathology images of colorectal adenocarcinomas. The proposed 

method offers significant advantages over existing methods in terms of accuracy, speed, 

interpretability, and flexibility in handling different nuclear morphologies. It also opens the avenue 

for applying correlation filters to related problems in biomedical imaging. We have made the code 

of the Python implementation of our proposed method available for download. The proposed scheme 

is also available as a web-server in which the user can submit their H&E stained histology image 

and obtained the response image from our filter. Both these implementations are accessible via the 

URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist 

 

 
Fig. 3. Visualization of MOSSE Filter in spatial domain 

 

http://faculty.pieas.edu.pk/fayyaz/software.html#corehist


9 

    

    

    

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4. (a) Test Images. (b) Desired Target Images (Ground Truth Regions). (c) Correlation Response Images obtained with 

RBF Filter (d) Binarized RBF Response images showing peak locations only. 
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