Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field
<p>(<b>A</b>) The binary 1D system of <span class="html-italic">N</span> non-interacting elementary magnets is shown, exposed to external magnetic field <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>H</mi> <mo>→</mo> </mover> <mo>≠</mo> <mn>0</mn> </mrow> </semantics></math>. The spin excess of the system is given by <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>m</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>N</mi> <mo>+</mo> <mi>m</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>N</mi> <mo>−</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </semantics></math> (<b>B</b>) The axis of symmetry shown with a dashed line “arranges” elementary magnets and restricts the number of available configurations of magnets.</p> "> Figure 2
<p>Schematic representation of a system of elementary magnets possessing axis of symmetry to the order of six, embedded into magnetic field <math display="inline"><semantics> <mover accent="true"> <mi>H</mi> <mo>→</mo> </mover> </semantics></math>. Magnetic moments and magnetic field <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>H</mi> <mo>→</mo> </mover> <mtext> </mtext> </mrow> </semantics></math> are normal to the image plane. Maintaining 6-fold symmetry requires simultaneous re-orientation of six magnets (for example, re-orientation of the magnets, marked in <a href="#entropy-22-00235-f002" class="html-fig">Figure 2</a> with blue color).</p> ">
Abstract
:1. Introduction
2. Symmetry and Entropy of Binary Magnetic Systems Embedded into a Magnetic Field
2.1. Symmetrizing and Entropy of 1D Systems Exposed to Magnetic Field
2.2. Symmetrizing and Entropy of 2D Systems Possessing Axes of Symmetry of Various Orders (j-Fold Symmetry)
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mikhailovsky, G.E.; Levich, A.P. Entropy, information and complexity or which aims the arrow of time? Entropy 2015, 17, 4863–4890. [Google Scholar] [CrossRef] [Green Version]
- Mikhailovsky, G. From Identity to uniqueness: The Emergence of increasingly higher levels of hierarchy in the process of the matter evolution. Entropy 2018, 20, 533. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014, 39, 510–554. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A.; Mayne, R. Actin automata: Phenomenology and localizations. Int. J. Bifurc. Chaos 2015, 25, 1550030. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A. On diversity of configurations generated by excitable cellular automata with dynamical excitation interval. Int. J. Mod. Phys. C 2012, 23, 1250085. [Google Scholar] [CrossRef] [Green Version]
- Nosonovsky, M. Entropy in tribology: In the search for applications. Entropy 2010, 12, 1345–1390. [Google Scholar] [CrossRef]
- Falk, G. Entropy, a resurrection of caloric-a look at the history of thermodynamics. Eur. J. Phys. 1985, 6, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.S.; Smith, N.A.; Francis, C.D. Removing the entropy from the definition of entropy: Clarifying the relationship between evolution, entropy, and the second law of thermodynamics. Evol. Educ. Outreach 2013, 6, 30. [Google Scholar] [CrossRef]
- Gaudenzi, R. Entropy? Exercices de Style. Entropy 2019, 21, 742. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.G. Entropy and disorder. Contemp. Phys. 1970, 11, 581–588. [Google Scholar] [CrossRef]
- Bormashenko, E.D. Entropy, information, and symmetry: Ordered is symmetrical. Entropy 2020, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Baierlein, R. Thermal Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Course of Theoretical Physics; Elsevier: Oxford, UK, 2011; Volume 5. [Google Scholar]
- Kittel, C.H. Thermal Physics; John and Wiley & Sons: New York, NY, USA, 1969. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bormashenko, E. Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field. Entropy 2020, 22, 235. https://doi.org/10.3390/e22020235
Bormashenko E. Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field. Entropy. 2020; 22(2):235. https://doi.org/10.3390/e22020235
Chicago/Turabian StyleBormashenko, Edward. 2020. "Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field" Entropy 22, no. 2: 235. https://doi.org/10.3390/e22020235
APA StyleBormashenko, E. (2020). Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field. Entropy, 22(2), 235. https://doi.org/10.3390/e22020235