Discrete Transforms and Matrix Rotation Based Cancelable Face and Fingerprint Recognition for Biometric Security Applications
<p>Matrix rotation with an angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math>.</p> "> Figure 2
<p>Proposed method based on a bank of rotations and DWT to generate the cancelable biometric templates.</p> "> Figure 3
<p>Proposed method based on DCT and a bank of rotations to generate the cancelable biometric templates.</p> "> Figure 4
<p>Proposed method based on DFT or DFrFT and a bank of rotations to generate the cancelable biometric templates.</p> "> Figure 5
<p>Samples of ORL database faces used as original biometrics and their histograms. (<b>a</b>) Original biometrics; (<b>b</b>) Biometrics histograms.</p> "> Figure 6
<p>Samples of FERET database faces used as original biometrics and their histograms. (<b>a</b>) Original biometrics; (<b>b</b>) Biometrics histograms.</p> "> Figure 7
<p>Samples of LFW database faces used as original biometrics and their histograms. (<b>a</b>) Original biometrics; (<b>b</b>) Biometrics histograms.</p> "> Figure 8
<p>Samples of the first fingerprints database used as original biometrics and their histograms. (<b>a</b>) Original biometrics; (<b>b</b>) Biometrics histograms.</p> "> Figure 9
<p>Samples of the second fingerprints database used as original biometrics and their histograms. (<b>a</b>) Original biometrics; (<b>b</b>) Biometrics histograms.</p> "> Figure 10
<p>Encrypted ORL biometric faces. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 10 Cont.
<p>Encrypted ORL biometric faces. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 11
<p>Encrypted FERET biometric faces. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 11 Cont.
<p>Encrypted FERET biometric faces. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 12
<p>Encrypted LFW biometric faces. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (c) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 13
<p>Encrypted first biometric fingerprints. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 14
<p>Encrypted second biometric fingerprints. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 14 Cont.
<p>Encrypted second biometric fingerprints. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 15
<p>Histogram of encrypted images for ORL faces biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 15 Cont.
<p>Histogram of encrypted images for ORL faces biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 16
<p>Histogram of encrypted images for FERET faces biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 17
<p>Histogram of encrypted images for LFW faces biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 18
<p>Histograms of encrypted images for the first database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 18 Cont.
<p>Histograms of encrypted images for the first database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 19
<p>Histograms of encrypted images for the second database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 19 Cont.
<p>Histograms of encrypted images for the second database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 20
<p>Correlation scores for authorized patterns of ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 20 Cont.
<p>Correlation scores for authorized patterns of ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 21
<p>Correlation scores for authorized patterns of FERET face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 22
<p>Correlation scores for authorized patterns of LFW face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 23
<p>Correlation scores for authorized patterns of the first database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 23 Cont.
<p>Correlation scores for authorized patterns of the first database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 24
<p>Correlation scores for authorized patterns of the second database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 24 Cont.
<p>Correlation scores for authorized patterns of the second database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 25
<p>Correlation scores for unauthorized imposter patterns for ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 25 Cont.
<p>Correlation scores for unauthorized imposter patterns for ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 26
<p>Correlation scores for unauthorized patterns of FERET face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 27
<p>Correlation scores for unauthorized patterns of LFW face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 28
<p>Correlation scores for unauthorized imposter patterns of the first database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 28 Cont.
<p>Correlation scores for unauthorized imposter patterns of the first database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 29
<p>Correlation scores for unauthorized imposter patterns of the second database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 29 Cont.
<p>Correlation scores for unauthorized imposter patterns of the second database of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 30
<p>Probability Distributions Function (PDFs) for ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 30 Cont.
<p>Probability Distributions Function (PDFs) for ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 31
<p>Probability Distributions Function (PDFs) for FERET face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 32
<p>Probability Distributions Function (PDFs) for LFW face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 33
<p>Probability Distributions Function (PDFs) for the first dataset of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 34
<p>Probability Distributions Function (PDFs) for the second dataset of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 34 Cont.
<p>Probability Distributions Function (PDFs) for the second dataset of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 35
<p>ROC curves for ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 35 Cont.
<p>ROC curves for ORL face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 36
<p>ROC curves for FERET face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 37
<p>ROC curves for LFW face biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [90, 90]; (<b>f</b>) Rotation in FrFT domain [370, 370].</p> "> Figure 38
<p>ROC curves for the first dataset of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 39
<p>ROC curves for the second dataset of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> "> Figure 39 Cont.
<p>ROC curves for the second dataset of the fingerprint biometrics. (<b>a</b>) Rotation in spatial domain; (<b>b</b>) Rotation followed by DWT; (<b>c</b>) Rotation in FFT domain; (<b>d</b>) Rotation in DCT domain; (<b>e</b>) Rotation in FrFT domain [45, 45]; (<b>f</b>) Rotation in FrFT domain [180, 90].</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Basics of the DFT
2.2. Basics of the DFrFT
2.3. Basics of the DCT
2.4. Basics of the DWT
2.5. Basics of Matrix Rotation
3. Proposed CBS Systems Based on Matrix Rotation in Discrete Transform Domains
3.1. Proposed Bank of Rotations with DWT
Algorithm 1 The pseudo code of the Wavelet-Based Bank of Rotations (WBBOR) method |
|
3.2. Proposed Bank of Rotations Based on DCT
Algorithm 2 The pseudo code of the Bank of Rotations Based on the DCT (BRBDCT) method |
|
3.3. Proposed Bank of Rotations Based on FFT or FrFT
Algorithm 3 The pseudo code of the Bank of Rotations Based on FFT (BRBFFT) method |
|
4. Performance Evaluation and Test Results
- Rotation in the spatial domain.
- Rotation followed by DWT as depicted in Section 3.1.
- Rotation in the frequency domain using DCT as explained in Section 3.2.
- Rotation in the frequency domain using FFT as explained in Section 3.3.
- Rotation in the FrFT domain in two different scenarios to select the best performance.
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hassaballah, M.; Aly, S. Face recognition: Challenges, achievements and future directions. IET Comput. Vis. 2015, 9, 614–626. [Google Scholar] [CrossRef]
- Learned-Miller, E.; Huang, G.B.; Roychowdhury, A.; Li, H.; Hua, G. Labeled Faces in the Wild: A Survey; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 189–248. [Google Scholar]
- Al-Waisy, A.S.; Al-Fahdawi, S.; Qahwaji, R. A Multi-biometric Face Recognition System Based on Multimodal Deep Learning Representations. In Deep Learning in Computer Vision; Informa UK Limited: Colchester, UK, 2020; pp. 89–126. [Google Scholar]
- Jain, A.K.; Ross, A.; Prabhakar, S. An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Kanade, S.G.; Petrovska-Delacrétaz, D.; Dorizzi, B. Enhancing Information Security and Privacy by Combining Biometrics with Cryptography. Synth. Lect. Inf. Secur. Priv. Trust. 2012, 3, 1–140. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Barrero, M.; Galbally, J. Reversing the irreversible: A survey on inverse biometrics. Comput. Secur. 2020, 90, 101700. [Google Scholar] [CrossRef]
- Rathgeb, C.; Uhl, A. A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. 2011, 2011, 3. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 87–102. [Google Scholar]
- Gomez-Barrero, M.; Galbally, J.; Rathgeb, C.; Busch, C. General framework to evaluate unlinkability in biometric template protection systems. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1406–1420. [Google Scholar] [CrossRef]
- Rosenberger, C. Evaluation of Biometric Template Protection Schemes based on a Transformation. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, Madeira, Portugal, 22–24 January 2018; pp. 216–224. [Google Scholar]
- Yuan, L.; Ran, Q.; Zhao, T. Image authentication based on double-image encryption and partial phase decryption in nonseparable fractional Fourier domain. Opt. Laser Technol. 2017, 88, 111–120. [Google Scholar] [CrossRef]
- Al-Afandy, K.; El-Shafai, W.; El-Rabaie, E.-S.M.; El-Samie, F.E.A.; Faragallah, O.S.; El-Mhalaway, A.; Shehata, A.M.; El-Banby, G.M.; El-Halawany, M.M. Robust hybrid watermarking techniques for different color imaging systems. Multimedia Tools Appl. 2018, 77, 25709–25759. [Google Scholar] [CrossRef]
- Hassaballah, M.; Awad, A.I. Detection and description of image features: An introduction. In Image Feature Detectors and Descriptors; Springer: Cham, Switzerland, 2016; pp. 1–8. [Google Scholar]
- Raj, J.R.F.; Vijayalakshmi, K.; Priya, S.K. Medical image denoising using multi-resolution transforms. Measurement 2019, 145, 769–778. [Google Scholar] [CrossRef]
- Xiong, Y.; Quan, C.; Tay, C. Multiple image encryption scheme based on pixel exchange operation and vector decomposition. Opt. Lasers Eng. 2018, 101, 113–121. [Google Scholar] [CrossRef]
- Sandhya, M.; Prasad, M.V. Securing fingerprint templates using fused structures. IET Biom. 2017, 6, 173–182. [Google Scholar] [CrossRef]
- Choudhury, B.; Then, P.; Raman, V.; Issac, B.; Haldar, M.K. Cancelable iris Biometrics based on data hiding schemes. In Proceedings of the IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 13–14 December 2016; pp. 1–6. [Google Scholar]
- Wang, S.; Deng, G.; Hu, J. A partial Hadamard transform approach to the design of cancelable fingerprint templates containing binary biometric representations. Pattern Recognit. 2017, 61, 447–458. [Google Scholar] [CrossRef]
- Soliman, R.F.; El Banby, G.M.; Algarni, A.D.; Elsheikh, M.; Soliman, N.F.; Amin, M.; El-Samie, F.E.A. Double random phase encoding for cancelable face and iris recognition. Appl. Opt. 2018, 57, 10305–10316. [Google Scholar] [CrossRef]
- Kaur, H.; Khanna, P. Cancelable features using log-Gabor filters for biometric authentication. Multimedia Tools Appl. 2016, 76, 4673–4694. [Google Scholar] [CrossRef]
- Umer, S.; Dhara, B.C.; Chanda, B. A novel cancelable iris recognition system based on feature learning techniques. Inf. Sci. 2017, 406, 102–118. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Hu, J.; Zheng, G.; Valli, C. A fingerprint and finger-vein based cancelable multi-biometric system. Pattern Recognit. 2018, 78, 242–251. [Google Scholar] [CrossRef]
- Kaur, H.; Khanna, P. Random Distance Method for Generating Unimodal and Multimodal Cancelable Biometric Features. IEEE Trans. Inf. Forensics Secur. 2018, 14, 709–719. [Google Scholar] [CrossRef]
- Choudhary, S.K.; Naik, A.K. Multimodal Biometric Authentication with Secured Templates—A Review. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 1062–1069. [Google Scholar]
- Patil, S.; Dhumal, P.; Lokhande, S.; Kamble, T. Design and implementation of secure biometric based authentication system using rfid and secret sharing. In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017; pp. 480–482. [Google Scholar]
- Bhartiya, N.; Jangid, N.; Jannu, S. Biometric Authentication Systems: Security Concerns and Solutions. In Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018. [Google Scholar]
- Elazm, L.A.A.; Ibrahim, S.A.; Egila, M.G.; Shawky, H.; Elsaid, M.K.H.; El-Shafai, W.; El-Samie, F.E.A. Cancelable face and fingerprint recognition based on the 3D jigsaw transform and optical encryption. Multimedia Tools Appl. 2020, 79, 14053–14078. [Google Scholar] [CrossRef]
- Abdellatef, E.; Ismail, N.A.; Elrahman, S.E.S.E.A.; Ismail, K.N.; Rihan, M.; El-Samie, F.E.A. Cancelable fusion-based face recognition. Multimedia Tools Appl. 2019, 78, 31557–31580. [Google Scholar] [CrossRef]
- Abdellatef, E.; Ismail, N.A.; Elrahman, S.E.S.E.A.; Ismail, K.N.; Rihan, M.; El-Samie, F.E.A. Cancelable multi-biometric recognition system based on deep learning. Vis. Comput. 2019, 36, 1097–1109. [Google Scholar] [CrossRef]
- Abdellatef, E.; Omran, E.M.; Soliman, R.F.; Ismail, N.A.; Elrahman, S.E.S.E.A.; Ismail, K.N.; Rihan, M.; El-Samie, F.E.A.; Eisa, A.A. Fusion of deep-learned and hand-crafted features for cancelable recognition systems. Soft Comput. 2020, 24, 15189–15208. [Google Scholar] [CrossRef]
- Soliman, R.F.; Amin, M.; El-Samie, F.E.A. A Modified Cancelable Biometrics Scheme Using Random Projection. Ann. Data Sci. 2018, 6, 223–236. [Google Scholar] [CrossRef]
- Hashad, F.G.; Zahran, O.; El-Rabaie, E.-S.M.; Elashry, I.F.; El-Samie, F.E.A. Fusion-based encryption scheme for cancelable fingerprint recognition. Multimedia Tools Appl. 2019, 78, 27351–27381. [Google Scholar] [CrossRef]
- Soliman, R.F.; Amin, M.; El-Samie, F.E.A. Cancelable Iris recognition system based on comb filter. Multimedia Tools Appl. 2019, 79, 2521–2541. [Google Scholar] [CrossRef]
- Algarni, A.D.; El Banby, G.M.; Soliman, N.F.; El-Samie, F.E.A.; Iliyasu, A.M. Efficient Implementation of Homomorphic and Fuzzy Transforms in Random-Projection Encryption Frameworks for Cancellable Face Recognition. Electronics 2020, 9, 1046. [Google Scholar] [CrossRef]
- Cherrat, E.M.; Alaoui, R.; Bouzahir, H. Convolutional neural networks approach for multimodal biometric identification system using the fusion of fingerprint, finger-vein and face images. PeerJ Comput. Sci. 2020, 6, e248. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Qi, M.; Lu, Y. Multimodal Biometrics Based on Convolutional Neural Network by Two-Layer Fusion. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–6. [Google Scholar]
- Ghosal, S.; Mandal, J.K. On the use of the Stirling Transform in image steganography. J. Inf. Secur. Appl. 2019, 46, 320–330. [Google Scholar] [CrossRef]
- Maan, P.; Singh, H.; Kumari, A.C. Image encryption based on Walsh Hadamard and fractional fourier transform using Radial Hilbert Mask. In Proceedings of the 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Gurgaon, India, 12–14 October 2017; pp. 179–183. [Google Scholar]
- Sharma, D. Robust Technique for Image Encryption and Decryption Using Discrete Fractional Fourier Transform with Random Phase Masking. Procedia Technol. 2013, 10, 707–714. [Google Scholar]
- Thanki, R.; Borra, S.; Dwivedi, V.; Borisagar, K. An efficient medical image watermarking scheme based on FDCuT–DCT. Eng. Sci. Technol. Int. J. 2017, 20, 1366–1379. [Google Scholar] [CrossRef]
- Tabassum, F.; Islam, I.; Amin, R. Comparison of filter banks of DWT in recovery of image using one dimensional signal vector. J. King Saud Univ. Comput. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Thanki, R.; Borra, S. A color image steganography in hybrid FRT–DWT domain. J. Inf. Secur. Appl. 2018, 40, 92–102. [Google Scholar] [CrossRef]
- Saravanan, G.; Yamuna, G. Real Time Implementation of Image Enhancement Based on 2D-DWT. Procedia Comput. Sci. 2016, 87, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.W.; Wang, X.S.; Sato, M. Uniform polarimetric matrix rotation theory and its applications. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4756–4770. [Google Scholar] [CrossRef]
- Li, S.; Yuan, Y.; Shen, S.; Tan, H. Identification and correction of microlens array rotation error in plenoptic imaging systems. Opt. Lasers Eng. 2019, 121, 156–168. [Google Scholar] [CrossRef]
- ORL Database. Available online: https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (accessed on 1 July 2020).
- FERET Database. Available online: https://www.nist.gov/itl/products-and-services/color-feret-database (accessed on 1 July 2020).
- LFW Database. Available online: http://vis-www.cs.umass.edu/lfw/ (accessed on 1 July 2020).
- FVC2002 (DB1) Database. Available online: https://www.biometricsinstitute.org/resources/fingerprint-verification-competition-fvc (accessed on 1 July 2020).
- FVC2002 (DB2) Database. Available online: http://bias.csr.unibo.it/fvc2002/databases.asp (accessed on 1 July 2020).
- Tarif, E.B.; Wibowo, S.; Wasimi, S.; Tareef, A. A hybrid encryption/hiding method for secure transmission of biometric data in multimodal authentication system. Multimedia Tools Appl. 2018, 77, 2485–2503. [Google Scholar] [CrossRef]
- Sree, S.S.; Radha, N. Cancellable multimodal biometric user authentication system with fuzzy vault. In Proceedings of the 2016 International Conference on Computer Communication and Informatics (ICCCI), Coilmbatore, India, 7–9 January 2016; pp. 1–6. [Google Scholar]
- Dang, T.K.; Truong, Q.C.; Le, T.T.B.; Truong, H. Cancellable fuzzy vault with periodic transformation for biometric template protection. IET Biometrics 2016, 5, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Joseph, J.; Singh, K. Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator. Appl. Opt. 2011, 50, 1805–1811. [Google Scholar] [CrossRef]
- Réfrégier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767–769. [Google Scholar] [CrossRef]
Method | AROC | Mean of Authorized Correlation Score | Mean of Un-Authorized Correlation Score | FAR | FRR | ERR |
---|---|---|---|---|---|---|
Cancelable based rotation | 0.9986 | 0.9286 | 0.7725 | 0.0047 | 0.0024 | 0.0018 |
Rotation followed by DWT | 0.9244 | 0.7041 | 0.0024 | 0.135 | 0.0228 | 0.0144 |
Rotation in FFT domain | 0.9784 | 0.7984 | −0.0152 | 0.0381 | 0.0209 | 0.0106 |
Rotation based on DCT | 0.8681 | 0.7228 | −0.0019 | 0.1641 | 0.1000 | 0.0568 |
Rotation based on FrFT [90, 90] | 0.9969 | 0.907 | −0.0897 | 0.0173 | 0.0112 | 0.0055 |
Rotation based on FrFT [180, 180] | 0.9967 | 0.8968 | −0.0092 | 0.0125 | 0.0104 | 0.005 |
Rotation based on FrFT [370, 370] | 0.9952 | 0.8976 | −0.0320 | 0.0311 | 0.0149 | 0.0072 |
Method | AROC | Mean of Authorized Correlation Score | Mean of Un-Authorized Correlation Score | FAR | FRR | ERR |
---|---|---|---|---|---|---|
Cancelable based rotation | 0.9920 | 0.8802 | 0.5490 | 0.0266 | 0.0212 | 0.0107 |
Rotation followed by DWT | 0.9236 | 0.6961 | −0.0012 | 0.1424 | 0.0354 | 0.0184 |
Rotation in FFT domain | 0.9657 | 0.7788 | 0.0182 | 0.0497 | 0.0075 | 0.0042 |
Rotation based on DCT | 0.914 | 0.751 | −0.0017 | 0.1559 | 0.0536 | 0.0245 |
Rotation based on FrFT [90, 90] | 0.9965 | 0.8810 | 0.0628 | 0.0171 | 0.0159 | 0.0091 |
Rotation based on FrFT [180, 180] | 0.9964 | 0.8971 | −0.0087 | 0.0159 | 0.0130 | 0.007 |
Rotation based on FrFT [370, 370] | 0.9941 | 0.8864 | 0.1304 | 0.0238 | 0.0220 | 0.0120 |
Method | AROC | Mean of Authorized Correlation Score | Mean of Un-Authorized Correlation Score | FAR | FRR | ERR |
---|---|---|---|---|---|---|
Cancelable based rotation | 0.9953 | 0.9199 | 0.8104 | 0.0190 | 0.0182 | 0.0109 |
Rotation followed by DWT | 0.9363 | 0.7103 | −0.0032 | 0.1118 | 0.0161 | 0.0088 |
Rotation in FFT domain | 0.9404 | 0.7921 | 0.0100 | 0.1592 | 0.0419 | 0.0201 |
Rotation based on DCT | 0.9581 | 0.7462 | −0.0007 | 0.0749 | 0.0258 | 0.0158 |
Rotation based on FrFT [90, 90] | 0.9561 | 0.8231 | 0.2578 | 0.0973 | 0.0254 | 0.0172 |
Rotation based on FrFT [180, 180] | 0.9965 | 0.8966 | −0.0089 | 0.0131 | 0.0114 | 0.008 |
Rotation based on FrFT [370, 370] | 0.9966 | 0.9015 | 0.0616 | 0.0081 | 0.0418 | 0.0213 |
Method | AROC | Mean of Authorized Correlation Score | Mean of Un-Authorized Correlation Score | FAR | FRR | ERR |
---|---|---|---|---|---|---|
Cancelable based rotation | 0.993 | 0.91 | 0.876 | 0.026 | 0.017 | 0.010 |
Rotation followed by DWT | 0.925 | 0.6777 | 0.0004 | 0.131 | 0.028 | 0.0187 |
Rotation in FFT domain | 0.953 | 0.7699 | 0.2135 | 0.104 | 0.014 | 0.0130 |
Rotation based on DCT | 0.963 | 0.772 | 0.0552 | 0.042 | 0.644 | 0.3251 |
Rotation based on FrFT [45, 45] | 0.901 | 0.7420 | 0.3009 | 0.194 | 0.057 | 0.0278 |
Rotation based on FrFT [180, 180] | 0.991 | 0.8879 | 0.0521 | 0.039 | 0.014 | 0.0076 |
Rotation based on FrFT [180, 90] | 0.997 | 0.8980 | −0.0751 | 0.012 | 0.010 | 0.0052 |
Method | AROC | Mean of Authorized Correlation Score | Mean of Un-Authorized Correlation Score | FAR | FRR | ERR |
---|---|---|---|---|---|---|
Cancelable based rotation | 0.9974 | 0.9338 | 0.8841 | 0.008 | 0.003 | 0.0030 |
Rotation followed by DWT | 0.9474 | 0.6771 | 0.0042 | 0.076 | 0.010 | 0.0081 |
Rotation in FFT domain | 0.9667 | 0.7623 | 0.2271 | 0.060 | 0.018 | 0.0097 |
Rotation based on DCT | 0.9608 | 0.7596 | 0.5771 | 0.044 | 0.035 | 0.0183 |
Rotation based on FrFT [45, 45] | 0.8683 | 0.7412 | 0.3049 | 0.203 | 0.038 | 0.0264 |
Rotation based on FrFT [180, 180] | 0.9909 | 0.8882 | 0.0531 | 0.037 | 0.015 | 0.0072 |
Rotation based on FrFT [180, 90] | 0.997 | 0.8913 | 0.0120 | 0.010 | 0.003 | 0.0026 |
Cancellable Biometric Method | EER | FAR | FRR | AROC |
---|---|---|---|---|
Proposed | 0.0023 | 0.008 | 0.003 | 0.998 |
Ref. [19] | 0.0924 | 0.0562 | 0.0257 | 0.868 |
Ref. [31] | 0.0178 | 0.0071 | 0.0876 | 0.896 |
Ref. [34] | 0.0098 | 0.0104 | 0.018 | 0.952 |
Ref. [51] | 0.1081 | 0.0927 | 0.0967 | 0.907 |
Ref. [52] | 0.0416 | 0.1955 | 0.0489 | 0.873 |
Ref. [53] | 0.0859 | 0.0435 | 0.0627 | 0.718 |
Ref. [54] | 0.0357 | 0.0985 | 0.0612 | 0.863 |
Ref. [55] | 0.0046 | 0.0235 | 0.0929 | 0.883 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarni, A.D.; El Banby, G.; Ismail, S.; El-Shafai, W.; El-Samie, F.E.A.; F. Soliman, N. Discrete Transforms and Matrix Rotation Based Cancelable Face and Fingerprint Recognition for Biometric Security Applications. Entropy 2020, 22, 1361. https://doi.org/10.3390/e22121361
Algarni AD, El Banby G, Ismail S, El-Shafai W, El-Samie FEA, F. Soliman N. Discrete Transforms and Matrix Rotation Based Cancelable Face and Fingerprint Recognition for Biometric Security Applications. Entropy. 2020; 22(12):1361. https://doi.org/10.3390/e22121361
Chicago/Turabian StyleAlgarni, Abeer D., Ghada El Banby, Sahar Ismail, Walid El-Shafai, Fathi E. Abd El-Samie, and Naglaa F. Soliman. 2020. "Discrete Transforms and Matrix Rotation Based Cancelable Face and Fingerprint Recognition for Biometric Security Applications" Entropy 22, no. 12: 1361. https://doi.org/10.3390/e22121361