[go: up one dir, main page]

Preview

Геодинамика и тектонофизика

Расширенный поиск
Том 2, № 1 (2011)

ТЕКТОНОФИЗИКА 

1-34 28902
Аннотация

Формализованы понятия «сейсмический пояс» (СП) и «сейсмическая зона» (СЗ). СЗ – территория в тектонически активной области, ограниченная контуром, внутри которого за заданный интервал времени (как правило, пятьдесят лет) количество сейсмических событий с М>3 (К>9) выше первого десятка (или не ниже определенной статистически значимой величины). Внешний контур СЗ должен проводиться по изолинии, соответствующей плотности ощутимых землетрясений с М≥3 не менее трех событий на заданную площадь. Выбор границы проведения контура оговаривается в каждом конкретном случае и в дальнейшем формализует систематизацию СЗ. Они должны корреспондировать с одной или несколькими определенными тектоническими структурами и характеризоваться зональностью внутреннего строения по распределению плотности очагов землетрясений.

СП – целостная по геодинамическому режиму развития структурная область сближенного в пространстве расположения сейсмических зон. Ею, как правило, являются границы плит или крупных внутриплитных блоков. В целом по этому критерию СП характеризуется постоянным в реальном времени типом напряженного состояния литосферы. В локальных участках СП напряженное состояние может характеризоваться векторами других сочетаний, отличающихся от превалирующего типа напряженного состояния. Эти вариации вызываются изменениями в простирании локальных и региональных сейсмоконтролирующих разрывов, а также зон современной деструкции литосферы.

Составлена карта СП и СЗ Земли, даны краткие описания СП и наиболее важных СЗ. Основные характеристики СП и СЗ систематизированы в табличных формах. Изложенные фактические материалы по СП и СЗ, их общая геодинамическая обстановка, линейно вытянутая локализация очагов землетрясений и другие данные свидетельствуют о необходимости оценивать структурные факторы контроля сейсмического процесса и его составляющей – локализации очагов землетрясений – на всех иерархических уровнях: от сейсмических поясов к сейсмическим зонам и от них к разломным зонам как концентраторам напряжений и структурам, локализующим очаги землетрясений. Из-за различия структурных факторов контроля и масштабности проявления СП и СЗ возникают существенные отличия в критериях возникновения землетрясений разной силы. Редкие катастрофические землетрясения в СП являются результатом эволюционного развития межплитных и крупных межблоковых границ в интервалах геохронологической шкалы времени и/или нарушения закономерностей эволюционного процесса из-за катастрофических землетрясений в близлежащем СП. Исследователям еще предстоит разработка тектонофизических моделей СП. В СЗ землетрясения средней силы и редкие сильные события являются результатом воздействия деформационных волн на метастабильное состояние зоны современной деструкции литосферы как структурной основы СЗ. Время между событиями в СЗ исчисляется в шкалах реального времени (десятки лет, годы, месяцы), которое по отношению к временным периодам геологической эволюции межплитных и других крупных структурных границ (сотни тысяч и миллионы лет) может рассматриваться как мгновенное. В подобном исчислении времени метастабильное состояние зон современной деструкции литосферы в СЗ может нарушаться не столько «эволюционным геологическим процессом», сколько факторами внешнего воздействия в интервалах реального времени. Подобный процесс в качестве примера и возможного аналогичного тестирования в других СЗ рассмотрен при анализе хорошо изученной Байкальской СЗ.

Пространственные и временные закономерности локализации землетрясений в областях динамического влияния разломов в СЗ и исследования по созданию их тектонофизических моделей открывают возможности среднесрочного прогноза землетрясений. Приведенный материал является серьезной аргументацией для перехода на количественную по своей базовой основе классификацию СЗ, выделение в них активных в реальное время разломов – концентраторов очагов землетрясений и оценку в их зонах  параметров, определяющих  пространственно-временную локализацию очагов. Изложенное можно рассматривать как назревшую необходимость разработки тектонофизических моделей СП и на их основе более глубокого понимания взаимодействий сейсмических зон при возникновении катастрофических землетрясений или/и близко расположенных идентичных по напряженному состоянию СП.

35-44 1082
Аннотация

В данной статье описаны эксперименты по изучению процесса прерывистого скольжения по разломам с изгибом с изменением направления под углом 5° в точке соединения двух участков данного разлома. В лабораторных условиях для изучения динамики и параметров развития физических полей применялись методики замера смещений по разломам, анализа тензора деформаций и акустической эмиссии (АЭ). По результатам экспериментов по изучению разломов с изгибом было выявлено следующее: 1. Четко установлена негативная корреляция между логарифмом цикла прерывистого скольжения и величиной нагрузки. 2. При различной величине нагрузки большинство нарушений стабильности на разломах с изгибом были проявлены как землетрясения-дублеты. Это означает, что одно событие нарушения стабильности состоит из двух подсобытий. Временной интервал между двумя подсобытиями варьируется от 100 до 200 мс. 3. При разных подходах к наблюдению, несмотря на одинаковую частоту выборки, отмечается различие косейсмической реакции (по замерам деформации была выявлена фаза значительного уменьшения деформации, однако длина смещения по разлому существенно не изменилась перед нарушением стабильности разлома). 4. Эксперименты с применением очень частой выборки позволяют расширить понимание процесса и улучшить осведомленность о предвестниках землетрясений и процессе сейсмогенеза, а также усовершенствовать анализ механизма сильных землетрясений и особенностей афтершоков.

45-67 1197
Аннотация

В работе на основе результатов теоретического тектонофизического анализа, включающего математическое моделирование напряжений, исследуются структуры разрушения, возникающие в массивах горных пород в зоне горизонтального сдвигания. Реология геосреды – упруго-катакластическое тело. Поскольку за пределом текучести (в данном случае не истинной пластической – дислокационной, а катакластической – трещинной) результат деформирования и морфология разрывных структур зависят от пути нагружения, в работе предлагается в качестве начального рассматривать гравитационное напряженное состояние, сохраняющее девиаторную компоненту. Приведены выражения, позволяющие на основе критериев теории пластичности рассчитывать глубину перехода гравитационного напряженного состояния от чисто упругого деформирования к упруго-катакластическому. Показано, что для скальных и консолидированных пород верхней коры вне зон разломов механизм ползучести связан с катакластическим течением, а не с дислокациями в кристаллах и зернах, что предопределяет зависимость девиаторных напряжений от всестороннего давления и сохранение определенного их уровня в породном массиве. Для исследуемого объекта разрывные нарушения возникают на начальной  стадии нагружения под действием гравитационного напряженного состояния. Их развитие продолжается в ходе квазиоднородного по глубине и латерали горизонтального сдвигания. Окончательное формирование структурного ансамбля трещин происходит после длительного этапа смещения блоков кристаллического фундамента – стадии локализованного сдвигания. Теоретический анализ эволюции напряженного состояния и морфологии структур разрушения показал наличие большого числа трещин со сбросовой компонентой смещения  в срединной по глубине части массива, формирующихся не только на начальной – гравитационной – стадии нагружения, но и на стадиях однородного и локализованного горизонтального сдвигания. Разрывы со сдвиговой компонентой смещения формируются преимущественно в верхней и близ осевой, глубинной части разреза. Выполненный анализ не только необходим для корректного  восстановления механизмов нагружения геологических объектов, но и может быть использован в разведочной геологии для прогноза областей повышенной трещиноватости определенной морфологии.

68-82 1101
Аннотация

Введение. Традиционный объект тектонофизических исследований – зоны сдвигания – рассматривается с точки зрения его деформационного состояния, а не в рамках изучения поля напряжений, как это делается обычно. Разница поля напряжений и поля деформаций при простом сдвигании исследователями отмечалась (рис. 1). Известно, что вторичные нарушения в природных зонах сдвигания и в экспериментах не всегда соответствуют структурам, теоретически предсказанным при изучении полей напряжений. Исследуется вопрос: какие сочетания вторичных структур возможны и какие запрещены в поле определенных возникающих деформаций?

Исходные представления. За теоретическую основу берется известная схема вторичных нарушений П. Ханкока [Hancock, 1985]. Эта схема сочетаний структур (рис. 2) носит условный, компилятивный характер: часть вторичных нарушений не может существовать одновременно (взбросы и сбросы, например), поскольку это приводит к противоположным деформационным результатам (рис. 3).

Теоретическое рассмотрение 2D деформаций в зоне сдвигания.В первую очередь теоретически изучаются случаи удлинения и укорочения самой зоны при ее постоянном объеме. Ранее ситуация рассматривалась как дополнительное сжатие или растяжение перпендикулярно к зоне сдвига (рис. 4), но не как ее удлинение и укорочение. При анализе деформированного состояния зон сдвигания было выявлено, что развитие трещин скола R и R′ типов, парных и идентичных в поле напряжений чистого сдвига, приводит к противоположным результатам в деформации зоны. Трещины R типа приводят к удлинению зоны и уменьшению ее мощности (рис. 5), трещины R′ типа могут возникать при ее укорочении и увеличении ее мощности (рис. 6). Аналогично ведут себя парные трещины X и P типов: X сколы возникают при удлинении, а P сколы – при укорочении зоны. Трещины Y типа, параллельные самой зоне, могут встречаться в обоих случаях. Рассмотрено также влияние увеличения или уменьшения объема зоны сдвигания на возможные сочетания структур, в том числе трещин отрыва и стилолитовых швов. Полученные теоретически сочетания вторичных нарушений сведены в шесть случаев (таблица), с указанием структур активных, разрешенных и запрещенных.

Примеры комбинаций вторичных нарушений в экспериментах и природных структурах. Рассматриваются примеры эшелонированных структур с позиций описания деформированного состояния зон сдвигания. Встречающиеся в экспериментах чередования участков развития сколов R и R′ типов интерпретируются как сочетание доменов с удлинением и укорочением среды (вдоль простирания зоны) при сохранении общей длины зоны (рис. 7). Сделано предположение о том, что вариации ширины зоны влияния разлома, наблюдаемые в природных структурах, и изменения амплитуд смещения в сейсмогенных разрывах (рис. 8) имеют отношение к этому явлению – чередованию участков развития сколов R и R′ типов, т.е. удлинению и укорочению доменов зоны. Структуры окончания крупных разломов типа «конский хвост» и «елочка» интерпретируются как домены с развитием R и P сколов в условиях удлинения и укорочения бортов разрыва (рис. 9). Показано, что зоны дробления в базальном срыве Воронцовского покрова относятся к сколам R типа и свидетельствуют об удлинении тела покрова (рис. 10). Рассмотрены некоторые конкретные случаи сочетаний P сколов и трещин отрыва в масштабе обнажения (рис. 11–15). Указаны структуры с развитием трещин X типа: синтетические сбросы в теле оползня и эшелонированные сбросы в бортах региональных сдвигов в нефтеносных структурах Западной Сибири (рис. 16).

Теоретическое исследование зон простого сдвигания в массиве при общей деформации чистого сдвига. Специально теоретически изучено состояние чистого сдвига в массиве, нарушенном зонами сдвигания. В этих условиях зоны сдвигания при деформировании массива будут удлиняться или укорачиваться в зависимости от их ориентировки к оси укорочения (рис. 17). Сделаны предположения о возможных сочетаниях вторичных нарушений в таких зонах сдвигания.

Выводы.Установлено, что в зоне сдвигания R и R′ трещины не могут развиваться в одном домене, поскольку приводят к противоположным деформационным следствиям, что не учитывалось при описании сдвигов в терминах полей напряжений. В отношении возникающих деформаций зоны сдвигания парными являются трещины R и X типов (при ее удлинении) и трещины R′ и P типов (встречаются при ее укорочении). Предложена таблица теоретически возможных и запрещенных вторичных нарушений при разных деформационных состояниях зоны сдвигания. Выдвинута задача сбора и систематизации устойчивых сочетаний эшелонированных вторичных структур на основе представления о деформированном состоянии зон сдвигания. Предложено использовать изменение длины зоны сдвигания при моделировании этих структур на эквивалентных материалах.

СОВРЕМЕННАЯ ГЕОДИНАМИКА 

83-94 1417
Аннотация

В статье рассматриваются новые данные сейсморазведки, гравии магнитометрии о строении подводной окраины Северного Сахалина мористее Охинского перешейка и пова Шмидта и приведены  результаты их геологической интерпретации. Среди них: 1) Трехбратская антиклинальная зона и одноименная мегадайка; 2) Восточно-Сахалинский прогиб, выполненный позднекайнозойскими, в основном помырскими и дерюгинскими, выносами Амура и продуктами абразии шельфовых складчатых структур (бенч); 3) придонные газогидраты и признаки газонасыщенности помырских и дерюгинских осадков. Выявлен ряд новых проблем, касающихся  тектонической, магматической и осадочной истории подводной окраины и смежных структур Сахалинской кордильеры и батиальной впадины Дерюгина.



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)