How does $f(n)$ grow? Is $f(n)=o(n)$?
How does $f(n)$ grow? Is $f(n)=o(n)$?
If $g(n)$ is the maximal $k$ such that there are $1\leq a_1,\ldots,a_k\leq n$ with all consecutive sums distinct (i.e. we drop the monotonicity assumption in the definition of $f$) then Hegyvári [He86] has proved that \[\left(\frac{1}{3}+o(1)\right) n\leq g(n)\leq \left(\frac{2}{3}+o(1)\right)n.\]
A similar question can be asked if we replace strict monotonicity with weak monotonicity (i.e. we allow $a_i=a_j$).
Erdős and Harzheim also ask what is the least $m$ which is not a sum of the given form? Can it be much larger than $n$? Erdős and Harzheim can show that $\sum_{x<a_i<x^2}\frac{1}{a_i}\ll 1$. Is it true that $\sum_i \frac{1}{a_i}\ll 1$?