[go: up one dir, main page]

Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Defect-fluorite oxides M1-yLnyO2-y/2(Ln = lanthanide; M = Hf, Zr, Ce, U, Th): Structure, property, and applications

  • Akio Nakamura , Nobuyuki Masaki , Haruyoshi Otobe , Yukio Hinatsu , Junhu Wang and Masuo Takeda

Abstract

An up-to-date summary of our coupled macroscopic (lattice parameter, a0) and microscopic (Mössbauer) studies on the entitled systems is given, shedding new light on the basic phase and structure properties of these technologically important, highly defective oxides. Through these studies, the intermediate-pyrochlore (P)-based local structure nature of the so-called stabilized-zirconia (SZ)- and stabilized-hafnia (SH)-type defect-fluorite (DF) phases in the M4+ = Zr and Hf systems seems to be almost unambiguously established with different (from the conventional) approaches: These are (1) the presence of a broad lattice parameter (a0) hump over the extended stabilized cubic DF region (y = ~0.3-~0.7); (2) the microscopic 151Eu-Mössbauer evidence of Eu3+ isomer shifts (ISs) showing characteristic V-shaped minima around the ideal-P area (y ~ 0.50) for both the M4+ = Zr and Hf systems; and (3) rich 155Gd-Mössbauer data on the Zr1-yGdyO2-y/2 system [IS, quadrupole splitting (QS), line width, peak height, and relative absorption area (RAA)], revealing detailed features of its ordered P-disordered DF phase and structure relationships. These results are discussed with reported basic-property data of these systems.


Conference

International IUPAC Conference on High Temperature Materials Chemistry (HTMC-XII), High Temperature Materials Chemistry, HTMC, High Temperature Materials Chemistry, 12th, Vienna, Austria, 2006-09-18–2006-09-22


References

1. doi:10.1016/0167-2738(87)90012-9, T. Uehara, K. Koto, S. Emura, F. Kanamaru. Solid State Ionics 23, 331 (1987).Search in Google Scholar

2. doi:10.1016/0167-2738(90)90359-Y, T. Moriga, S. Emura, A. Yoshiasa, S. Kikkawa, F. Kanamaru, K. Koto. Solid State Ionics 40/41, 357 (1990).Search in Google Scholar

3. doi:10.1016/0167-2738(92)90232-E, D. Komyoji, A. Yoshiasa, T. Moriga, S. Emura, F. Kanamaru, K. Koto. Solid State Ionics 50, 291 (1992).Search in Google Scholar

4. O. T. Sorensen (Ed.). Nonstoichiometric Oxides, Academic Press, New York (1981).Search in Google Scholar

5. A. S. Nowick. Diffusion in Crystalline Solids, G. E. Murch, A. S. Nowick (Eds.), pp. 143-188, Academic Press, New York (1984).10.1016/B978-0-12-522662-2.50008-XSearch in Google Scholar

6. T. Fujino, C. Miyake. In Handbook on the Physics and Chemistry of the Actinides, Vol. 6, A. J. Freeman, C. Keller (Eds.), Chap. 3, pp. 155-240, Elsevier Science, Amsterdam (1991).Search in Google Scholar

7. N. Sakai, K. Yamaji, T. Horita, Y. P. Xiong, H. Yokokawa. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, K. A. Gschneidner Jr., J.-C. G. Bunzli, V. K. Pecharsky (Eds.), pp. 1-43, Elsevier, Amsterdam (2005).10.1016/S0168-1273(05)35001-XSearch in Google Scholar

8. doi:10.1016/0079-6786(83)90001-8, M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Solid State Chem. 15, 55 (1983).Search in Google Scholar

9. L. Minervini, R. W. Grimes. J. Am. Ceram. Soc. 83, 1873 (2000).10.1111/j.1151-2916.2000.tb01484.xSearch in Google Scholar

10. doi:10.1149/1.2129406, A. Nakamura, J. B. Wagner Jr. J. Electrochem. Soc. 127, 2325 (1980).Search in Google Scholar

11. doi:10.1149/1.2108965, A. Nakamura, J. B. Wagner Jr. J. Electrochem. Soc. 133, 1542 (1986).Search in Google Scholar

12. M. F. Lasker, R. A. Rapp. Z. Phys. Chem. NF 49, 198 (1966).10.1524/zpch.1966.49.3_5.198Search in Google Scholar

13. doi:10.1149/1.2403668, R. N. Blumenthal, F. S. Brugner, G. E. Garnier. J. Electrochem. Soc. 120, 2320 (1973).Search in Google Scholar

14. C. Degueldre, U. Kasemeyer, F. Botta, G. Ledergeber. Mater. Res. Soc. Symp. Proc. 412, 15 (1996).10.1557/PROC-412-15Search in Google Scholar

15. K. E. Sickafus, Hj. Matzke, Th. Hartmann, K. Yasuda, J. A. Valdez, P. Chodak III, M. Nastasi, R.A. Verral. J. Nucl. Mater. 274, 66 (1999).10.1016/S0022-3115(99)00041-0Search in Google Scholar

16. S. X. Wang, B. D. Begg, L. M. Wang, R. C. Ewing, W. J. Weber, K. V. G. Kutty. J. Mater. Res. 14, 4470 (1999).10.1557/JMR.1999.0606Search in Google Scholar

17. doi:10.1126/science.289.5487.2051, W. J. Weber, R. C. Ewing. Science 289, 2051 (2000).Search in Google Scholar

18. doi:10.1063/1.1707213, R. C. Ewing, W. J. Weber, J. Lien. J. Appl. Phys. 95, 5949 (2004).Search in Google Scholar

19. C. O'Driscoll. Chem. Br. Jan., 16 (2001).10.1177/088453360101600404Search in Google Scholar

20. doi:10.1126/science.289.5480.748, K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimura, F. Li, K. J. McClellan, T. Hartmann. Science 289, 748 (2000).Search in Google Scholar

21. doi:10.1002/pssa.2210580114, T. Van Dijk, K. J. de Vries, A. J. Burggraaf. Phys. Status Solidi A 58, 115 (1980).Search in Google Scholar

22. doi:10.1016/0167-2738(81)90306-4, A. J. Burggraaf, T. Van Dijk, M. J. Verkerk. Solid State Ionics 5, 519 (1981).Search in Google Scholar

23. doi:10.1016/0167-2738(83)90110-8, M. P. Van Dijk, K. J. de Vries, A. J. Burggraaf. Solid State Ionics 9/10, 913 (1981).Search in Google Scholar

24. doi:10.1016/0167-2738(85)90067-0, M. P. Van Dijk, A. N. Cormack, A. J. Burggraaf, C. A. Catlow. Solid State Ionics 17, 159 (1981).Search in Google Scholar

25. doi:10.1016/0022-4596(86)90253-7, M. P. Van Dijk, F. C. Mulhoff, A. J. Burggraaf. J. Solid State Chem. 62, 377 (1986).Search in Google Scholar

26. doi:10.1088/0022-3719/7/1/009, D. Steele, B. E. Fender. J. Phys. C: Solid State Phys. 7, 1 (1974).Search in Google Scholar

27. doi:10.1107/S0567739480001179, M. Morinaga, J. B. Cohen. Acta. Crystallogr., Sect. A 36, 520 (1980).Search in Google Scholar

28. M. H. Tuller, J. D.-Ghys, H. Dexpert, P. Lagarde. J. Solid State Chem. 69, 153 (1987).10.1016/0022-4596(87)90021-1Search in Google Scholar

29. doi:10.1016/0022-3697(90)90156-A, M. Cole, C. R. A. Catlow, J. P. Dragun. J. Phys. Chem. Solids 51, 507 (1990).Search in Google Scholar

30. H. Otobe, A. Nakamura. Solid Oxide Fuel Cells (SOFC)-VI, Electrochem. Soc. Proc. 99-19, p. 463, NJ (1999).10.1149/199919.0463PVSearch in Google Scholar

31. (a) N. M. Masaki, N. R. D. Guillermo, H. Otobe, A. Nakamura, Y. Izumiyama, Y. Hinatsu. In Mass and Charge Transport in Inorganic Materials: Fundamentals to Devices, Part A, P.Vincenzini, V. Buscaglia (Eds.), p. 1233, TECHNA, Faenza (2000);Search in Google Scholar

31. (b) D. Harada, Y. Hinatsu, N. M. Masaki, A. Nakamura. J. Am. Ceram. Soc. 85, 647 (2002);Search in Google Scholar

31. (c) N. M. Masaki, H. Otobe, A.Nakamura. Hyperfine Interact. C 305 (2003);10.1007/978-94-010-0281-3_76Search in Google Scholar

31. (d) N. M. Masaki, H. Otobe, A. Nakamura, D.Harada, K. Ito, Y. Sasaki, Y. Hinatsu. J. Nucl. Sci. Technol. Suppl. 3, 217 (2002);10.1080/00223131.2002.10875448Search in Google Scholar

31. (e) doi:10.1016/j.materresbull.2005.01.003, N.M.Masaki, H. Otobe, A. Nakamura, D. Harada, Y. Hinatsu. Mater. Res. Bull. 40, 650 (2005);Search in Google Scholar

31. (f) doi:10.1016/j.jpcs.2004.07.017, N. M. Masaki, A. Nakamura, F. Furuuchi, Y. Hinatsu. J. Phys. Chem. Solids 66, 312 (2005).Search in Google Scholar

32. doi:10.1107/S0567739476001551, R. D. Shannon. Acta Crystallogr., Sect. A 32, 751 (1976).Search in Google Scholar

33. (a) doi:10.1016/j.ssi.2003.09.003, J. Wang, A. Nakamura, M. Takeda. Solid State Ionics 164, 185 (2003);Search in Google Scholar

33. (b) doi:10.1016/S0022-4596(03)00353-0, J. Wang, H. Otobe, A. Nakamura, M. Takeda. J. Solid State Chem. 176, 105 (2003);Search in Google Scholar

33. (c) A. Nakamura, H. Otobe, J.Wang, M. Takeda. J. Phys. Chem. Solids 66, 35 (2005);Search in Google Scholar

33. (d) doi:10.1016/j.jnucmat.2004.08.025, J. Wang, M. Takeda, A. Nakamura. J. Nucl. Mater. 340, 33 (2005).Search in Google Scholar

34. doi:10.1016/S0167-577X(00)00311-6, I. C. Cosentino, R. Muccillo. Mater. Lett. 48, 253 (2001).Search in Google Scholar

35. doi:10.1111/j.1151-2916.1989.tb07663.x, D. J. Kim. J. Am. Ceram. Soc. 72, 1415 (1989).Search in Google Scholar

36. doi:10.1111/j.1151-2916.1986.tb04741.x, R. P. Ingel, D. Lewis III. J. Am. Ceram. Soc. 69, 1415 (1986).Search in Google Scholar

37. V. I. Aleksandrov, G. E. Valyano, B. V. Luken, V. V. Osiko, A. E. Cautbort, V. M. Tatarintsev, V.N. Filatova. Izv. Akad. Nauk. SSSR, Neorg. Mater. 12, 273 (1976).Search in Google Scholar

38. (a) doi:10.1111/j.1151-2916.1992.tb04222.x, M. Yashima, N. Ishizawa, M. Yoshimura. J. Am. Ceram. Soc. 75, 1541 (1992);Search in Google Scholar

38. (b) doi:10.1111/j.1151-2916.1992.tb04223.x, M. Yashima, N. Ishizawa, M. Yoshimura. J. Am. Ceram. Soc. 75, 1550 (1992).Search in Google Scholar

39. A-an Zen. Am. Mineral. 41, 523 (1956).Search in Google Scholar

40. doi:10.1002/pssb.19660180251, C. P. Kempter. Phys. Status Solidi 18, K117 (1966).Search in Google Scholar

41. doi:10.1039/f19807602448, P. P. Porta, A. Anichini. J. Chem. Soc. Faraday Trans. 1 76, 2448 (1980).Search in Google Scholar

42. doi:10.1016/S0022-3115(02)01157-1, V. Grover, A. K. Tyagi. J. Nucl. Mater. 305, 83 (2002).Search in Google Scholar

43. (a) doi:10.1111/j.1151-2916.1960.tb14590.x, F. A. Mumpton, R. Roy. J. Am. Ceram. Soc. 43, 234 (1960);Search in Google Scholar

43. (b) H. Radzewitz. KFK433 (1966).Search in Google Scholar

44. (a) doi:10.1016/0022-4596(85)90118-5, Y. Hinatsu, T. Fujino. J. Solid State Chem. 60, 244 (1985);Search in Google Scholar

44. (b) doi:10.1016/0022-4596(86)90175-1, Y. Hinatsu, T. Fujino. J. Solid State Chem. 63, 250 (1986).Search in Google Scholar

45. doi:10.1111/j.1151-2916.1957.tb12629.x, P. Duwez, E. Loh. J. Am. Ceram. Soc. 40, 321 (1957).Search in Google Scholar

46. doi:10.1111/j.1151-2916.1965.tb14794.x, E. C. Subbarao, P. H. Sutter, J. Hrizo. J. Am. Ceram. Soc. 48, 443 (1965).Search in Google Scholar

47. doi:10.1149/1.2134143, T. Kudo, H. Obayashi. J. Electrochem. Soc. 122, 142 (1975).Search in Google Scholar

48. doi:10.1021/ja01159a085, J. D. Mucllourgh. J. Am. Chem. Soc. 72, 1386 (1950).Search in Google Scholar

49. doi:10.1149/1.2129018, R. T. Dirstine, R. N. Blumenthal, T. F. Kuech. J. Electrochem. Soc. 126, 264 (1979).Search in Google Scholar

50. doi:10.1016/0022-4596(70)90140-4, M. R. Thornber, D. J. M. Bevan, E. Summerville. J. Solid State Chem. 1, 545 (1970).Search in Google Scholar

51. doi:10.1111/j.1151-2916.1983.tb09983.x, P. Duran, C. Pascual, J. P. Coutures, S. R. Skaggs. J. Am. Ceram. Soc. 66, 101 (1983).Search in Google Scholar

52. F. M. Spiridinov, L. M. Komissarova. Zh. Neorg. Khim. 15, 875 (1970).Search in Google Scholar

53. A. I. Ioffe, D. S. Ruthman, S. V. Karpachov. J. Phys. Chem. Solids 23, 141 (1977).10.1016/0013-4686(78)80110-8Search in Google Scholar

54. R. E. W. Casselton. Phys. Status Solidi A 2, 571 (1070).10.1002/pssa.19700020319Search in Google Scholar

55. J. Leferire. Ann. Chim. 8, 117 (1963).Search in Google Scholar

56. W. Baukel, R. Sheidegger. Ber. Dtsch. Keram. Soc. 45, 611 (1968).Search in Google Scholar

57. doi:10.1111/j.1151-2916.1978.tb09220.x, V. S. Stubican, R. C. Hink, S. P. Roy. J. Am. Ceram. Soc. 61, 17 (1978).Search in Google Scholar

58. JCPDS Powder Diffraction FileTM (Inorganic Phases) (1941-2001) and its subsequent CD-ROM version, International Centre for Diffraction Data, PA, USA.Search in Google Scholar

59. J. J. Katz, G. Seaborg, L. S. Morss. In The Chemistry of the Actinide Elements, Vol. 2, p. 1156, Chapman and Hall, New York (1986).10.1007/978-94-009-4077-2Search in Google Scholar

60. doi:10.1016/0025-5408(74)90092-0, D. Michel, M. Perez, Y. Jorba, R. Collongues. Mater. Res. Bull. 9, 1457 (1974).Search in Google Scholar

61. (a) V. I. Goldanskii, E. F. Markov. In Chemical Applications of Mossbauer Spectroscopy, V. I. Goldanskii, R. H. Herber (Eds.), p. 103, Academic Press, New York (1968);Search in Google Scholar

61. (b) N. N. Greenwood, T. C. Gibb. Mossbauer Spectroscopy, Chapman and Hall, London (1971);10.1007/978-94-009-5697-1Search in Google Scholar

61. (c) G.Czjzek. In Mossbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 1, G.J. Long, F. Grandjean (Eds.), Chap. 9, Plenum Press, New York (1993);Search in Google Scholar

61. (d) H. Sano. Mossbauer Spectroscopy, The Chemical Application, Kodansha, Tokyo (1972) (in Japanese).Search in Google Scholar

62. doi:10.1016/0022-4596(89)90050-9, P. D. Battle, T. C. Gibb, P. Lightfoot, D. C. Munro. J. Solid State Chem. 83, 31 (1989).Search in Google Scholar

63. doi:10.1103/PhysRevB.18.2031, C. L. Chien, A. W. Sleight. Phys. Rev. B 18, 2031 (1978).Search in Google Scholar

64. (a) doi:10.1016/0038-1098(74)91138-7, H. Armon, E. R. Bauminger, A. Diamant, I. Nowik, S. Ofer. Solid State Commun. 15, 543 (1973);Search in Google Scholar

64. (b) doi:10.1016/0375-9601(74)90042-5, E. R. Bauminger, A. Diamant, I. Felner, I. Nowik, S. Ofer. Phys. Lett. A 50, 321 (1974);Search in Google Scholar

64. (c) E. R. Bauminger, A. Diamant, I. Felner, I. Nowik, A. Mustachi, S. Ofer. J. Phys. Colloque C6, T37, C6-47 (1976);10.1051/jphyscol:1976647Search in Google Scholar

64. (d) doi:10.1103/PhysRevB.18.1936, B. D. Dunlop, G. K. Shenoy, J. M. Friedt, M. Meyer, G. J. McCarthy. Phys. Rev. B 18, 1936 (1978).Search in Google Scholar

65. doi:10.1016/0022-3093(89)90009-4, S. Tanabe, K. Hirao, N. Soga. J. Non-Cryst. Solids 113, 178 (1989).Search in Google Scholar

66. doi:10.1016/0022-4596(72)90161-2, C. Keller, U. Berndt, H. Engener, L. Leiter. J. Solid State Chem. 4, 453 (1972).Search in Google Scholar

67. A. Nakamura, K. Yoshii. J. Nucl. Sci. Technol. Suppl. 3, 160 (2002).10.1080/00223131.2002.10875433Search in Google Scholar

68. (a) A. Nakamura. Z. Phys. Chem. 207, 223 (1998);10.1524/zpch.1998.207.Part_1_2.223Search in Google Scholar

68. (b) doi:10.1016/0022-3115(88)90141-9, C. Miyake, T. Isobe, S. Imoto. J. Nucl. Mater. 152, 64 (1988).Search in Google Scholar

69. (a) I. D. Brown. In Structure and Bonding in Crystals, Vol. II, M. O'Keeffe, A. Navrotsky (Eds.), Chap. 14, pp. 1-30, Academic Press, New York (1981);Search in Google Scholar

69. (b) I. D. Brown. The Chemical Bond in Inorganic Chemistry, IUCr Mongraphs on Crystallograpy-12, Oxford University Press, Oxford (2002).Search in Google Scholar

70. S. M. Haile, S. Meilicke. Mater. Res. Soc. Proc. 398, 599 (1995).10.1557/PROC-398-599Search in Google Scholar

71. doi:10.1016/j.jnucmat.2004.08.024, J. Wang, M. Takeda, T. Shishido. J. Nucl. Mater. 340, 52 (2004).Search in Google Scholar

72. doi:10.1016/j.jallcom.2005.02.022, M. Zinkevich, Ch. Wang, F. M. Morales, M. Ruhle, F. Aldinger. J. Alloys Compd. 398, 261 (2005).Search in Google Scholar

73. doi:10.1088/0022-3719/12/14/024, W. A. Barton, J. D. Cashion. J. Phys. C 12, 2897 (1979).Search in Google Scholar

74. doi:10.1088/0305-4608/13/3/010, M. J. Besnus, J. P. Kappler, A. Meyer. J. Phys. F: Metal Phys. 13, 597 (1983).Search in Google Scholar

75. (a) doi:10.1016/S0040-6031(03)00060-1, C. Degueldre, P. Tissot, H. Lartigue, M. Pouchon. Thermochim. Acta 403, 267 (2003);Search in Google Scholar

75. (b) doi:10.1111/j.1151-2916.1990.tb07619.x, M.V. Nevitt, Y. Fang, S.-K. Chan. J. Am. Ceram. Soc. 73, 2502 (1990);Search in Google Scholar

75. (c) doi:10.1006/jcht.1998.0481, T. Tojo, T. Atake, T.Mori, H. Yamamura. J. Chem. Thermodyn. 31, 831 (1999).Search in Google Scholar

76. (a) doi:10.1021/j150579a028, H. W. Goldstein, E. F. Nelson, P. W. Walsh, D. White. J. Phys. Chem. 63, 1445 (1959);Search in Google Scholar

76. (b) B.M. Walsh, J. M. McMahon, W. C. Edwards, N. P. Barnos, R. W. Equall, R. L. Hutcheson. J. Opt. Soc. Am. 19, 2893 (2002);10.1364/JOSAB.19.002893Search in Google Scholar

76. (c) doi:10.1103/PhysRevB.49.1447, H. Li, C. Y. Wu, J. C. Ho. Phys. Rev. B 49, 1447 (1994).Search in Google Scholar

77. (a) doi:10.1016/j.jct.2004.03.017, S. Lutique, P. Javorsky, R. M. J. Konings, J.-C. Krupa, A. C. G. van Genderen, J. C. van Miltenburg, F. Wastin. J. Chem. Thermodyn. 36, 609 (2004);Search in Google Scholar

77. (b) doi:10.1016/S0021-9614(03)00040-5, S. Lutique, P. Javorsky, R. M. J. Konings, A. C. G. van Genderen, J. C. van Miltenburg, F. Wastin. J. Chem. Thermodyn. 35, 955 (2003);Search in Google Scholar

77. (c) doi:10.1143/JPSJ.72.411, Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, T. Sakakibara. J. Phys. Soc. Jpn. 72, 411 (2003);Search in Google Scholar

77. (d) doi:10.1103/PhysRevB.72.085107, J. M. Pruneda, E. Artacho. Phys. Rev. B 72, 085107 (2005);Search in Google Scholar

77. (e) doi:10.1103/PhysRevB.69.024416, S. W. Han, J. S. Gardner, C. H. Booth. Phys. Rev. B 69, 024416 (2004).Search in Google Scholar

78. doi:10.1016/j.ssi.2006.02.030, K. Kawata, H. Maekawa, T. Nemoto, T. Yamamura. Solid State Inonics 177, 1687 (2006).Search in Google Scholar

79. doi:10.1016/j.jallcom.2004.12.190, T. Hisashige, Y. Yamamura, T. Tsuji. J. Alloys Compd. 408-412, 1153 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779101691/html
Scroll to top button