[go: up one dir, main page]

Academia.eduAcademia.edu
34th INTERNATIONAL SYMPOSIUM ON ARCHAEOMETRY 3-7 May 2004 Zaragoza, Spain Organising Institutions Department of Analytical Chemistry University of Zaragoza, Spain Institución «Fernando el Católico» (C.S.I.C.) Patrimoni-UB Group Excma. Diputación de Zaragoza University of Barcelona, Spain Z ARAGOZ A, 2006 CREDITS PREFACE COLLABORATORS INDEX ARTICLES 34th INTERNATIONAL SYMPOSIUM ON ARCHAEOMETRY 3-7 May 2004, Zaragoza, Spain STANDING COMMITTEE M.J. Aitken (Oxford) President M.S. Tite (Oxford) Chairman L. Barba (Mexico City) K. T. Biro (Budapest) R. M. Farquahar (Toronto) H. Kars (Amsterdam) Y. Maniatis (Athens) P. Meyers (Los Angeles) A. M. Özer (Ankara) J. Pérez-Arantegui (Zaragoza) G. A. Wagner (Heilderberg) Ch. Wang (China) S. U. Wisseman (Urbana) • LOCAL ORGANISING COMMITTEE Josefina Pérez-Arantegui, Chairperson Francisco Laborda (Zaragoza) Gemma Cepriá (Zaragoza) Pedro Paracuellos (Zaragoza) Pilar Lapuente (Zaragoza) Judit Molera (Barcelona) Lorena Merino (Barcelona) Mario Vendrell (Barcelona) The logo on the front cover represents a piece of lustre pottery from Muel (16th century), Museum of Zaragoza. The shadow is a TEM image of Cu nanocrystals forming the lustre layer. START Preface On behalf of the organising committee and the University of Zaragoza I would like to welcome all participants to Zaragoza for the 34th International Symposium on Archaeometry. We are very grateful to the institutions and individuals who assisted in making this conference possible and supported our work during its preparation. I would want to thank the financial supporters and in particular to the Aragonese Government, the University of Zaragoza and the Ministry of Science and Technology, for their important collaboration. Special thanks are due to Gres de Aragon and Euroarce that have supported the special session of this symposium: “Evolution and Technology of glazes”. Finally, Archaeometry 2004 would not have taken place without the collaboration and support of many other people, from Zaragoza and Barcelona, and I would like to thank them too, but there is not enough place in this page to write all their names. I hope that all of you will enjoy this conference and the scientific work, but also that you will have enough time to visit and enjoy Zaragoza. Josefina Pérez-Arantegui Zaragoza, 2004 START PUBLICACIÓN NÚMERO 2.621 DE LA INSTITUCIÓN «FERNANDO EL CATÓLICO» (EXCMA. DIPUTACIÓN DE ZARAGOZA) PLAZA DE ESPAÑA, 2 · 50071 ZARAGOZA (ESPAÑA) TELS. [34] 976 28 88 78/79 · FAX [34] 976 28 88 69 ifc@dpz.es www. ifc.dpz.es © Los autores. © De la presente edición, Institución «Fernando el Católico». ISBN: 84-7820-848-8 DEPÓSITO LEGAL: Z-1.368/2006 PREIMPRESIÓN: Ebro Composición, S.L. Zaragoza. IMPRESIÓN: Sociedad Cooperativa, Librería General. Zaragoza. IMPRESO EN ESPAÑA. UNIÓN EUROPEA. 34th INTERNATIONAL SYMPOSIUM ON ARCHAEOMETRY 3-7 May 2004, Zaragoza, Spain Organising Institutions Department of Analytical Chemistry of the University of Zaragoza Patrimoni-UB Group of the University of Barcelona Rectorado Universidad de Zaragoza Consejo Social Universidad de Zaragoza MINISTERIO DE CIENCIA Y TECNOLOGÍA Departamento de Ciencia, Tecnología y Universidad Sponsors of the special session Evolution and Technology of Glazes Collaborating institutions CORTES DE ARAGÓN INSTITUCIÓN FERNANDO EL CATÓLICO START Departamento de Educación, Cultura y Deporte 1. FIELD ARCHAEOLOGY........................................................................... 13 Geophysics and Archaeology at la Mesa Site, Chiclana de la Frontera, Cádiz (Spain), Luis Barba Pingarrón, Salvador Domínguez-Bella, José Ramos Muñoz, Vicente Castañeda Fernández, Manuela Pérez Rodríguez and María Sánchez Aragón................................................................................................. 15 Geophysics and Archaeology at Santa Cruz Atizapan, Central Mexico, Luis Barba, Agustín Ortiz, Jorge Blancas and Yoko Sugiura .......................... 21 Remote Sensing And Fieldwalking Survey Applied To The Study Of Ancient Landscapes: An Integrated Approach, Stefano Campana, Cristina Felici .................................................................................................... 27 Geophysical Survey and Archaeological Verification of Prehistoric iron production areas and medieval glass-woeking sites, Kr#ivánek Roman ... 33 Chemical Residues of Human Activities in San Vincenzo al Volturno, Alessandra Pecci, Federico Marazzi ................................................................. 39 2. DATING ....................................................................................................... 45 Irsl and GLSL Dating Studies of Samples From Neolithic Site, ÇatalhöyükTurkey, AkogÛ lu, K.G., Özbakan, M., Özer, A. M. .......................................... 47 Paleomagnetic Dating of Pollen Stratigraphy From Lake Sediment Based on PSV Master Curve From Central Finland, Teija Alenius, Antti Ojala and Mia Tiljander.............................................................................................. 53 Thermoluminescence and 14C dating of brick structures in S. Lorenzo church in Milano. Late Antique and Medieval phases, Laura Fieni, A. Galli, M. Martini, E. Sibilia, T. Mannoni................................................... 55 Artificial Fluorine Enrichment in Bones: Diagenesis as Restricting Factor for Exposure Age Dating by Fluorine Diffusion, A. A.-M. Gaschen, U. Krähenbühl, M. Döbeli, A. Markwitz, B. Barry ......................................... 61 34th INTERNATIONAL SYMPOSIUM INDEX 5 INDEX 3-7 May 2004 • Zaragoza, Spain 34th INTERNATIONAL SYMPOSIUM TL-dating of Mousterian open air sites of the Isle valley: Les Forêts and Petit Bost (Dordogne, France), Pierre Guibert, Christelle Lahaye, Matthieu Duttine, Françoise Bechtel ................................................................................ 67 AMS Radiocarbon Dating of Protoclassic Maya Lime Plasters from Aguateca, Guatemala, G. W. L. Hodgins, A. J. Vonarx and B. Bachand........................ 73 Accelerator Mass Spectrometry dating of archaeological samples from Nola area (Naples, ItalyCampania), C. Lubritto, F. Terrasi, A. D’Onofrio, C. Sabbarese, F. Marzaioli, I. Passariello, D. Rogalla, M. Rubino, N. De Cesare, M. Romano, L. Gialanella, V. Roca, C. Rolfs, C. Albore Livadie, G. Vecchio.. 79 Toward a Chrono-Seriation Method Based on European Trade White Beads in Northeastern North America, Jean-François Moreau, R.G.V. Hancock, Marcel Moussette ............................................................................................. 85 Petrographic investigations and 14 C dating for approximating the age of lime mortars, Danuta Nawrocka, Jacek Michniewicz................................ 91 Simulations of the Statistical Archaeomagnetic Dating Method, Rob Sternberg, Jeffrey L. Eighmy .................................................................... 97 Investigation of the Effects of the Sampling and Breaking Techniques on the TL Signal and Mineralogical Composition of the ‘Fines Grains’, N.C. Tsirliganis, Z. Loukou, D. Papadopoulou, G. Polymeris, G. Papathanasiou, P. Kotsanidis ...................................................................................................... 103 Application of Fine-Grain TL and Single-Aliquot osl Datin Techniques to well and not well Fired Ancient Ceramic Materials, N.C. Tsirliganis, D. Tsiafaki, Z. Loukou, G. Polymeris ............................................................... 109 Exploration of the possibilities to date medieval building construction by OSL: the case of the brickbuilt citadel of Termez (Uzbekistan), Emmanuelle Vieillevigne, Pierre Guibert, Françoise Bechtel ........................... 115 3. TECHNOLOGY AND PROVENANCEOF METALS............................ 121 Metallurgic Process used in the “Farga Rosell”Ancient Bloomery Fire (Andorra), Aureli Álvarez, Antoni Vila, Josep M. Bosch, Olivier Codina, Xavier Clop ...................................................................................................... 123 The lead metal from two Hellenistic towns in east central Greece, E. Asderaki, Th. Rehren .................................................................................... 131 Manufactured Technology and Materials of an Early Hellenistic Funerary Bronze Urn, E. Asderaki, K. Tsatsouli, A. G. Karydas ................................... 137 Roman and medieval litharge cakes: structure and composition, Justine Bayley, Kerstin Eckstein.................................................................................... 145 Strontium Isotopes Provenance Ancient Iron Artifacts, P. Degryse, P. Muchez, J. Schneider, M. Brauns, U. Haack, N. Kellens, M. Waelkens......................... 155 6 INDEX Early Cycladic Metallurgy in a Sttlement Context: Examination of Metallurgical Remains from Daskaleio-Kavos, Keros (Cyclades, Greece), Myrto Georgakopoulou ..................................................................................... 169 Archeometallurgical Studies with a Movable EDXRF Spectrometer on Messenian Gold. The methodological approach, George Styl Korres, Giovanni E. Gigante, Stefano Ridolfi................................................................................ 175 Non-destructive* Pb isotope analysis of Harappan Lead Artifacts using Ethylenediaminetetraacetic Acid and ICP-MS. (*practically), Randall W. Law and James H. Burton......................................................................................... 181 Investigation of a Pre - Columbian Vicus Nose Filigree, Laura Limata, Aaron Shugar, Mike Notis, Dale Newbury ...................................................... 187 Archaeometry and the international evolution of studies on metallurgy: a bibliometrical perspective, Elías López-Romero González de la Aleja, Ignacio Montero-Ruiz ...................................................................................... 195 Laboratory investigation of inlays and surface treatments for the decoration of copper-base alloy objects from the imperial roman period, François Mathis, Dominique Robcis, Thierry Borel, Marc Aucouturier, Sophie Descamps ............................................................................................... 201 The Question of Early Copper Production at Almizaraque, SE Spain, Roland Mueller, Thilo Rehren, Salvador Rovira Llorens ................................ 209 “Free silica type” slags of silver production in the Iberian Peninsula, Salvador Rovira, Mark A. Hunt ....................................................................... 217 Provenance of Iron Artefacts from the Celtic Oppidum of Manching (Bavaria), R. Schwab, B. Höppner, E. Pernicka .............................................. 223 Tracking Chronological Developments in Chalcolithic Metallurgy: An Assessment of Possible Correlations between Radiocarbon Data and Compositional Analyses, Aaron N. Shugar, Christopher J. Gohm ...... 231 Early Chinese Scissors and Shears: Category, Design and Shape: A Metallurgical Study, Aaron Shugar, Mike Notis, Laura Limata, DongNing Wong, Parsaoran Hutapea and Han Rubin ..................................................... 237 Iron Smelting Slag Formation at Tell Hammeh (az-Zarqa), Jordan, Xander Veldhuijzen and Thilo Rehren........................................................................... 245 4. TECHNOLOGY AND PROVENANCE OF STONE, PIGMENTS AND PLASTERS................................................................................................... Scientific Study of Græco-Roman Wall Plasters & Pigments in Alexandria, Egypt, Dr. Safaa Abd El Salam ....................................................................... 251 253 3-7 May 2004 • Zaragoza, Spain 161 34th INTERNATIONAL SYMPOSIUM Analysis of Cu-Based Alloys and their Corrosion Products from the Bilbilis Arachaeological context by SEM-EDS, M. Gener, A. Martín Costea, V. López, E. Otero, M. Morcillo........................................................................ 7 INDEX 3-7 May 2004 • Zaragoza, Spain 34th INTERNATIONAL SYMPOSIUM Non-Destructive Raman Characterisation of Pigment on Byzantine Frescoes in Some Cave Churches of Salento (Puglia, Italy), G. E. De Benedetto, R. Vatinno ......................................................................................................... 261 Carpathian obsidians: Myth and reality, T. Biró, Katalin .......................... 267 Raw Materials characteristics and Durability of Some Medieval Painted Plasters in Anatolia, Evin Caner, S, ahinde Demirci, Emine N. Caner-Saltik 279 Direct determination of chrome yellow by a harmless electroanalytical technique, Cepriá, G., Campos, M. T., Pérez-Arantegui, J. .......................... 285 Use of granitoid stones from Calabria (Southern Italy) in antiquity: petrographic and geochemical characterization of ancient quarries of Roman Age, Cirrincione, R., Crisci, G. M., De Vuono, E., Pezzino, A., Punturo, R. ...... 289 Examination of Burnt mud Brick and Plaster From Şapinuwa- Hittite City for the Characterization of Their Technological Properties, Gülnur Güdücü, Emine N. Caner-Saltik, Şahinde Demirci ....................................................... 295 Fingerprinting Carpathian Obsidians by PGAA: First Results on Geological and Archaeological Specimens, Zsolt Kasztovszky, Katalin T. Biró ........... 301 A Technique for Determining the Provenance of Harappan Banded Limestone “Ringstones” using ICP-AES, Randall W. Law and James H. Burton .......................................................................................................... 309 Non-Destructive Characterisation of Pigments by Means of the Complementary use of Pixe-Alpha and XRD portable Systems, Lighea Pappalardo, Giuseppe Pappalardo, Francesco Paolo Romano, Francesca Amorini, Ermelinda Scafiri, Maria Grazia Branciforti, Agata Taormina........ 315 e-Visarch: An On-Line Raman Spectra Data Base of Archaeological Materials on Stone and Plaster Supports, M. Pérez Alonso, K. Castro, M. A. Olazabal and J. M. Madariaga............................................................... 321 Non-destructive analysis of paintings layers based on Reflectance Spectroscopy and Energy Dispersive XRF, Gianluca Poldi, Letizia Bonizzoni, Nicola Ludwig, Ilaria Mascheroni, Mario Milazzo............................................ 327 Non-destructive investigations of Indian Miniatures by a Combined Spectroscopic approach: PIXE, 3D-μXRF and UV-VIS spectroscopy, Ina Reiche, Raffael Dedo Gadebusch, Oliver Hahn, Uwe Reinholz, Birgit Kanngießer, Wolfgang Malzer .......................................................................... 333 Discovering of the Egyptian blue employment for the decoration in a 10 th century manuscript, characterised by absorption in diffuse reflectance spectrometry, P. Roger, J. N. Barrandon, A. Bos....................... 341 8 INDEX 347 Where does Lapis Lazuli come from? Non-Destructive Provenance Analysis by PGAA, J. Zöldföldi, S. Richter, Zs. Kasztovszky, J. Mihály...... 353 5. TECHNOLOGY AND PROVENANCE OF CERAMICS AND GLASSES ..................................................................................................... 363 Sgrafito ceramic from Florentine area (XVI Century): Archaeometric Characterization of Paste and Coating, Francesca Amato, Bruno Fabbri, Sabrina Gualtieri, Andrea Ruffini, Anna Valeri Moore................................... 365 Early Bronze age Faience from North Italy and Slovakia: A Comparative Archaeometric Study, Ivana Angelini, Gilberto Artioli, Angela Polla, Raffaele C. de Marinis....................................................................................... 371 Archaeometrical investigations on ceramics of the late-Middle Age in Calabria (South-Italy), S. Aragona, F. A. Cuteri, L. Mavilia, M. Rotili, R. Ponterio, S. Trusso, C. Vasi.......................................................................... 379 Characterization of Bricks and Tiles from 17 -Century Maryland, Ruth Ann Armitage, Leah Minc, David V. Hill, Silas D. Hurry ............................. 387 An investigation of the ceramic technology of a late Iznik ceramic production (XVIIth century AD), Ayed Ben Amara, Max Schvoerer, Maïa Cuin, Mohamed Baji Ben Mami ............................................................. 393 Interaction between leads glazes and bodies: Research on the mode of application of the glazing mixture, Ayed Ben Amara, Max Schvoerer ...... 399 Trade patterns in Philistine Pottery, David Ben-Shlomo............................. 405 Petrographic Anaysis of Roman-Bizantine roof tiles: Preliminary results, David Ben-Shlomo ............................................................................................ 413 ‘Potting Histories’ Ceramic Production and Consumption in Almohad Seville, Rebecca Bridgman ............................................................................... 419 Metallic lustre of glazed ceramics: evolution of decorations In search for discriminating elements, D. Chabanne, O. Bobin, M. Schvoerer, C. Ney, Ph. Sciau............................................................................................................ 427 Cathodoluminescence in Archaeometry through case studies: classification of Chalcolithic ceramics from Syria, English glass stems (XVI-XVIIth c.AD), and glass/paste interface of glazed Islamic ceramics (X-XIIth c. AD), Rémy Chapoulie, Floréal Daniel ....................................................................... 433 Study and Characterization of Islamic Ceramic Tiles from Onda-Castellon (Spain), L. Chiva, J.J. Gómez, V. Estall, I. Núñez, J.B. Carda ........................ 439 th 3-7 May 2004 • Zaragoza, Spain Stone materials of the baroque town of Noto (Italy): Petrographic and geochemical features and their behaviour in decay, L. G. Russo, P. Mazzoleni, A. Pezzino .................................................................................. 34th INTERNATIONAL SYMPOSIUM th 9 INDEX 3-7 May 2004 • Zaragoza, Spain 34th INTERNATIONAL SYMPOSIUM Experimental petrology of the firing process of renaissance pottery from deruta (Umbria, Italy), Claudia Conti, Beatrice Moroni............................... 447 The ‘Invention’ of Lead Crystal Glass, David Dungworth, Colin Brain ... 453 Analyzing a mirror from the mirror’s hall at La Granja Royal Palace, Segovia, Spain. Some problems in composition, conservation and heritage management, Angel Fuentes, Joaquín Barrio, Rosario García, Pilar Da Silva, Paloma Pastor, Victoria Muñoz............................................... 459 Oil lamps from Two Spanish Roman Archaeological Sites. I. Chemical Characterization and multivariate analysis, Rosario García Giménez, Raquel Vigil de la Villa, María Dolores Petit Domínguez and María Isabel Rucandi Sáez ..................................................................................................... 465 Oil lamps from two Spanish Roman Archaeological Sites. II. Physical Characterization and Multivariante Analysis, Rosario García Giménez, Raquel Vigil de la Villa, María Dolores Petit Domínguez and María Isabel Rucandio Sáez ................................................................................................... 471 Experimental tests for recognizing application technology and firing conditions of archaeological glazed ceramics, Sabrina Gualtieri, Giampaolo Ercolani, Andrea Ruffini, Idema Venturi ......................................................... 477 Evidence for the period of distribution of European glass beads at the Spanish mission of Tipu in Belize, R.G.V. Hancock, E. Graham ................ 483 The Early Islamic Glazed Ceramics of Akhsiket, Uzbekistan, C. Henshaw, Th. Rehren, O. Papachristou, A.A. Anarbaev .................................................. 489 European glass trade beads, neutron activation analysis, and the historial implications of dating seasonal basque whaling stations in the new Word, A. Herzog, J.-F. Moreau .................................................................................... 495 Comparative Ceramic Petrology of “Aguada Portezuelo” Ceramic Style (ca. 650-900 A.D.): a Technological Approach for its Study at the Catamarca Valley (Catamarca Valley, Province of Catamarca, Northwestern Argentine), Guillermo A. De La Fuente, Néstor Kristcautzky, Gustavo Toselli .................................................................................................. 503 The “Mystery” of the Post-Medieval triangular crucibles reconsidered – A global perspective, Marcos Martinón-Torres and Thilo Rehren ............ 515 Mapping and confocal microraman spectroscopy: Non-invasive analysis of weathered stained glass windows, S. Murcia-Mascarós, C. Domingo, S. Sánchez-Cortés J. V. García-Ramos, A. Muñoz-Ruiz .................................. 525 Lustre pottery in inland Spain: Analytical study of the ceramic decoration produced in Muel (Aragon) in the 16th century, Josefina Pérez-Arantegui, Ángel Larrea...................................................................................................... 531 10 INDEX TEM-EELS Investigation of Ancient Ceramics, Ph. Sciau, S. Relaix and Y. Khin............................................................................................................... 543 Early Neolithic Pottery Production in Hungary: a Comparative Archaeometrical Study of Körös and Starc# evo Ceramics, György Szakmány, Katalin Gherdán and Elisabetta Starnini ......................................................... 549 Archaeometrical investigation of pottery of the 10th century, Edelény, North-East Hungary, Veronika Szilágyi, György Szakmány, Mária Wolf, Tamás Weiszburg............................................................................................... 555 The wandering scientist, or the quest for intercalibration, S.Y. Waksman.. 563 6. BIOMATERIALS......................................................................................... 569 Anatomo-pathological study of the human remains coming from the Dolmen de Cañada Real housed at the Archaeological Museum of Seville (Spain), Rosario Cabrero García, Assumpciò Malgosa Morera, Santiago Safont Mas, M. Eulàlia Subirà de Galdàcano and Ezequiel Gómez Murga ... 571 Reconstructing the Diet of Rancho del Rio’s Inhabitants by Paleoecological and Archaeological Approaches, Alison Diefenderfer, David Small, Zicheng Yu and Aaron Shugar ............................................................................................. 577 Cooking activities in a building yard during the Middle Age. Organic residues in potsherds recovered from the Carmine Convent in Siena, Alessandra Pecci, Francesca Grassi and Laura Salvini, Gianluca Giorgi ....... 583 3-7 May 2004 • Zaragoza, Spain 537 34th INTERNATIONAL SYMPOSIUM Non-destructive quantiative determination of trace elements in fine ceramics by using a portable beam staility controlled XRF Sepctrometer (BSC-XRF), Francesco Paolo Romano, Giuseppe Pappalardo, Lighea Pappalardo, Francesca Rizzo, Salvatore Garraffo, Rossella Gigli, Antonella Pautasso ....... 11 INDEX ACCELERATOR MASS SPECTROMETRY DATING OF ARCHAEOLOGICAL SAMPLES FROM NOLA AREA (NAPLES, ITALYCAMPANIA) C. LUBRITTO*, F. TERRASI, A. D’ONOFRIO, C. SABBARESE, F. MARZAIOLI, I. PASSARIELLO, +D. ROGALLA, M. RUBINO Dipartimento di Scienze Ambientali, Seconda Università di Napoli N. DE CESARE Dipartimento di Scienze della Vita, Seconda Università di Napoli M. ROMANO, L. GIALANELLA, V. ROCA Dipartimento di Scienze Fisiche and INFN Sezione di Napoli (Italy) C. ROLFS Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum (Germany) C. ALBORE LIVADIE Centre Camille Jullian, Aix-en-Provence (Francia) G. VECCHIO Soprintendenza per i Beni Archeologici delle Province di Napoli e Caserta (Italy) A systematic investigation on dates of samples from different archaeological sites related to Bronze age settlements in Campania region (Nola, S. Paolo Belsito, ecc.) has been undertaken, using the 14C method. A significant marker in this context is the Avellino pumice eruption: charred wood and bone samples have been collected in layers both below and above the eruption material, with the aim of reconstructing the cronology of anthropic activity from the old bronze age to the middle bronze age, as well as the impact of the plinian eruption. Samples were treated in the Mass Spectrometry Laboratory of the Environmental Science Department of the II University of Naples, and measured at the Accelerator Mass Spectrometry (AMS) facility set-up at the Dinamitron Tandem Laboratory of the Ruhr Universitaet in Bochum (D). * corresponding author; e-mail: lubritto@sa.infn.it + Marie Curie fellow, contract N. HPMD-CT-2001-00088 INDEX 34th INTERNATIONAL SYMPOSIUM ABSTRACT 79 3-7 May 2004 • Zaragoza, Spain 34th INTERNATIONAL SYMPOSIUM 80 1. INTRODUCTION: THE NOLA BRONZE AGE VILLAGE In May 2001, in the immediate outskirts of Nola (an important city 25 km east from Naples), an early bronze age village, in locality Croce del Papa (CdP), was discovered buried by the products of a Plinian eruption of Vesuvius, the Avellino Pumices eruption of 3500 BP (Livadie Albore et al 2001). Three huts, originally part of a more extended settlement, were found six metres below the ground level, next to an enclosed area which included a threshing floor, some covered structures and an animal pen made out of wattle and daub (fig.1). The humidity of the soil conserved not only human footprints, but the hoof marks of domestic animals (sheeps, goats, cows and pigs) in the enclosures where they fled from at the time of the eruption (AA.VV. 2002). Nine pregnant goats were discovered in the animal fence (fig. 2). All other inhabitants escaped at the time of the eruption. After the fall of grey pumices that covered the huts without causing their collapse, a wave of mud penetrated slowly within the structures providing a counterforce to the pumices accumulated outside, and allowing their preservation. Recent excavations, in the place named Masseria Rossa (MR), few km apart from CdP, highlighted hut’s remains above rearranged pumices of Avellino’s eruption (AA.VV. 2002). This discover emphasizes the reinstallation of anthropic activity on the old environment after the eruption, that probably was mainly characterized by agriculture and stock farm activities characterizing the Palma Campania facies. Aim of this work is the historical reconstruction of this paleoenvironment by radiocarbon (14C) dating of organic materials (bone, charcoal) collected in layers below and above the eruption materials. In particular, the main goal is to confirm the eruption date and to characterize the human resumption, in the lands involved by the eruption. Figure 1. General plan of the site of Croce del Papa. 1,2 Wells; 3 Subcircular enclosure, threshing floor; 4 Hut 2; 5 Hut 3; 6 Hut 4; 7 Cage with goats; 8 Waterhole. INDEX 3-7 May 2004 • Zaragoza, Spain Figure 2. Animal pen with nine pregnant goats. 14 C - AMS DATING C is a radioactive isotope that enters as 14CO2 in living photosynthetic organisms or, indirectly, as “organic 14C” through the feeding in the etherothrophes. Therefore, 14C concentrations inside the biosphere and the environment in which organism lives are the same (isotopic equilibrium). The metabolic processes, which continually bring carbon and realise the isotopic equilibrium, will be ended with the organism’s death. From this time, 14C content decreases according to the radioactive decay law and the isotopic ratio between 14C and 12C supplies information about the time elapsed since the metabolic activities ended (organism’s death). In this work, radiocarbon dating is performed by Accelerator Mass Spectrometry (AMS): an ultrasensitive analytic technique which measures the abundance of the rare isotope (14C) with respect to the corresponding abundant one (12C). This isotopic ratio represents a very sensitive indicator of natural and anthropogenic processes that characterize past environment (Terrasi 2001). AMS technique offers the opportunity to use small amount of material (few milligrams) and to measure its isotopic ratio in a few minutes. Therefore, being a non destructive technique, AMS becomes an important tool to date rare and precious finds, like those of Nola archaeological site. Measurable age intervals (from hundreds to 50000 of years), together with the cited features, make the AMS a powerful tool for the study of an archaeologicalenvironmental site. 14 INDEX 34th INTERNATIONAL SYMPOSIUM 2. 81 3-7 May 2004 • Zaragoza, Spain 2.1. Method and sample preparation The AMS technique needs a set of physical and chemical pretreatments: their principal purpose is to isolate the carbon fraction and to eliminate carbon contaminating the sample. The physical and chemical pretreatments depend on the nature of the sample and on the organic fraction to be extract. The physical treatment includes the removal of obvious contaminants and the sample grinding. After these steps, the sample chemical pretreatment starts. Typically, the chemical treatments include the AAA method (Acid-Alkali-Acid) for charcoal, wood, peat and vegetation (Mook, Streurman 1983); collagen extraction from bone (Longin 1971); alpha-cellulose extraction from tree ring (Green 1963), and phosphoric acid method for shell and marine carbonates (Hoefs 1987). In fig. 3, it is shown the distribution of different kinds of samples, treated so far at the Mass Spectrometry Laboratory of the Environmental Science Department of the II University of Naples, and measured at the Accelerator Mass Spectrometry (AMS) system of the Ruhr Universitaet in Bochum (D) (Lubritto et al 2004). Moreover the pretreatments used for bone and charcoal samples, collected in CdP and S. Paolo Belsito (SPB), has been summarized in tab. 1. Sample’s Pretreatment’s kind kind 34th INTERNATIONAL SYMPOSIUM Charcoal Treatment AAA (Acid/Alkali/Acid): Acid (HCl 3%) - Alkali (HCl 3%). (NaOH 3%)- Acid Between each phase, there are dilution with distilled water. Bone Bone is pulverized and immersed in an acid bath (HCl 0,6 N) at 0°C, where the organic fraction of the bone, collagen, is extracted. This cycle is repeated different times, depending from the bone preservation. 82 Figure 3. Cake diagram: % kind of samples treated in Mass Spectrometry Lab DSA SUN. Typic used mass (mg) 1-10 50-200 Table 1. Different pretreatments applied to bone and charcoal samples, collected in Croce del Papa and S. Paolo Belsito. Then the sample has been dried and pyrolized by means of a quartz tube under a nitrogen (N2) flow at 600°C. The pretreated sample is mixed with CuO and silver wires and put in a quartz test tube where a high vacuum with a membrane-turbomolecular pump system is achieved. Then, the test tube is sealed and heated to 900°C in order to oxidise the sample to CO2. The CO2 is cryogenically transferred to a “graphitization line” where it is reduced to graphite at 700°C. During the cryogenic transfer, the gas passes through a cold trap (dry ice-ethanol) in order to remove the water vapour impurities. The reaction takes place, tipically, during 4 hr in a 15 ml reaction chamber INDEX 3-7 May 2004 • Zaragoza, Spain filled with an hydrogen atmosphere at a partial pressure double than the CO2 partial pressure and using iron powder catalyst (Dee et al 2000). The graphite, togheter with silver powder, is pressed into a target holder (an aluminum cylinder) and placed in the accelerator ion source of the Bochum Universitaet Accelerator Mass Spectrometry system (Lubritto et al 2004). The graphite, placed in the ion source, is converted to a single negatively charged ion beam by means of the sputtering process and injected, after the mass selection occurring in the injection magnet, into the Tandem Accelerator. Here, the carbon ions are accelerated in the first acceleration stage till the gas stripper where they are converted to positive ions. Subsequently, these cations are accelerated again from the stripper to the accelerator exit. The positive ion beam passes through further electric and magnetic selections in order to identificate and count the 14C ions in a 6E-E detector. Figure 4. Calendarial intervals of Nola land’s samples. To confirm the eruption date and to characterize the time of the human resumption, finds coming from CdP site (a goat bone found in the animal fence and two charcoals found near the goat’s furnace), SPB site (bone and charcoal), MR site (bone and two charcoals) and Palma Campania site (charcoal) were measured. In figure 4, for each sample, the calendarial age intervals, obtained by the calibration software CALIB 3.0 (Stuiver, Reimer 1993) and expressed as Before Christ years (BC), with the corresponding statistical 1 sigma (s) error, are represented. In particular, measurements performed on the samples coming from CDP site , indicated in figure 4 by the circle A, give a more accurate indication about the date of the eruption, with respect to previous studies (Livadie Albore et al 1998), fixed to 1880 – 1680 B.C. and whose central value is represented in figure 4 by continuos vertical line. Indeed, the calendarial age interval, obtained INDEX 34th INTERNATIONAL SYMPOSIUM 3. RESULTS AND CONCLUSIONS 83 3-7 May 2004 • Zaragoza, Spain from the dating of a goat bone buried by eruption, fixs the eruption calendarial age interval to 1782-1686 BC. Results of measurements of sample coming from MR site (circle C) and SPB site (circle B) represent the calendarial age intervals characterizing the anthropic activity resumption, after the eruption, in the two sites. For SPB site, the human resumption happened in a time interval of about 250 years , while for the MR one, it happened around 150 years after the eruption. These results show an installation’s fracture after the eruption: as a matter of fact the cultural development of the resumption in SPB e MR have the same characteristic as previous Palma Campania facies, as shown by the hut shapes and ceramic finds. Finally, the measurement of a charcoal coming from a layer, below the eruption one, at Palma Campania (circle D) demonstrates the existence of an older settlement abandoned shortly before the eruption. 34th INTERNATIONAL SYMPOSIUM REFERENCES 84 AA.VV., 2002. Nola Quattromila anni fa- Il villaggio del Bronzo Antico distrutto dal Vesuvio. Catalogo della mostra inaugurata a Nola il 20 giugno 2002. L’Arca e L’Arco s.r.l. Nola (Na). Dee M., Bronk Ramsey C., 2000. Refinement of graphite target production at ORAU. Nuclear Instrument and Methods in Physics Research B, 172, 449-450 Green J.W., 1963. Methods of Carbohydrates Chemistry III (Ed. R.I. Whistler). Academic Press, New York NK, pp.9-21. Hoefs J., Stable Isotope Geochemistry. Third Edition, Springer-Verlag, Berlin, 1987. Livadie Albore C., Castaldo N., Mastrolorenzo G., Vecchio G., 2001. Effetti delle eruzioni del Somma-Vesuvio sul territorio di Nola dall’età del Bronzo all’epoca romana tardiva. In: Tephras-chronologie et archéologie, Congrès “Tèphrochronologie et coexistence hommes-volcans”. Brivs-Charensac 24-29 agosto 1998, Dossiers de l’Archéo-Logis n°1, Clermont-Ferrand. Livadie Albore C., Campatola L., Roca V., Romano M., Terrasi F., D’Onofrio A., Russo F., 1998. Sulla datazione dell’eruzione delle “Pomici di Avellino” e il suo impatto sui siti archeologici del Bronzo antico della Campania. IV Giornata delle Scienze della Terra e L’Archeometria. Ed.CUEN, pp.201-203. Longin R., 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241-2 Lubritto C., Rogalla D., Rubino M., Marzaioli F., Passariello I., Romano M., Spadaccini G., Casa G., Di Leva A., Gialanella L., Imbriani G., Calmieri A., Roca V., Rolfs C., Sabbarese C., Strieder F., Schuermann D., Terrasi F., 2004. Accelerator Mass Spectrometry at the 4 MV Dynamitron Tandem in Bochum. Nuclear Instruments and Methods in Physics Research B, 222, 255-260. Mook W.G. & Streurman H.J., 1983. Section B: The chemical aspects. Physical and chemical aspects of radiocarbon dating. PACT 8-II. 1. 47-53 Stuiver M., Reimer P.J., 1993. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215-230. Terrasi F., 2001. Metodo di datazione mediante Spettrometria di Massa Ultrasensibile (AMS). In: Elementi di Archeometria, metodi fisici per i beni culturali (Castellano A., Martini M., Sibilia E., eds.) pp. 64-80. Egea INDEX