[go: up one dir, main page]

Academia.eduAcademia.edu
Springer Handbooks Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical and applied sciences. The world’s leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of scientific and technical information. The volumes are designed to be useful as readable desk book to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided. More information about this series at http://www.springer.com/series/15558 Wolfgang Kresse  David Danko Editors Springer Handbook of Geographic Information 2nd Edition With 620 Figures and 98 Tables Editors Wolfgang Kresse University of Applied Sciences Neubrandenburg Neubrandenburg, Germany ISSN 2522-8692 ISBN 978-3-030-53124-9 https://doi.org/10.1007/978-3-030-53125-6 David Danko Esri Vienna, VA, USA ISSN 2522-8706 (electronic) ISBN 978-3-030-53125-6 (eBook) © Springer Nature Switzerland AG 2022 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface “I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me”. (Isaac Newton) In this sense, the book may help us to discover a small bay in the ocean of truth and may slightly improve our insight into geographic information. It has been almost 60 years since the phrase “geographic information system” was coined in the early 1960s. Geographers recognized the need for automation of detail-oriented processing, and computers had matured enough to handle rudimentary models of the geographic phenomenon. In the early days, geographic information systems were operated mostly in the purview of national governments and universities. As processing power and model complexity grew, and the cost of memory storage dropped, GIS slowly spread beyond governments into many disciplines and the private sector. Since the turn of the century, GIS has continued to grow rapidly, and with the advent of the Internet is now used every day even by nongeographic literate people in all walks of life. As a typical cross-sectional science, geographic information supports many other subject areas with respect to their spatial components. The diversity of geographic information is often overlooked; one of the goals of this handbook to demonstrate this variety of applications. They range from classical subjects, such as cartography and photogrammetry, through modern fields, like Internet-based Earth browsers, to specialized systems for agriculture or health services, just to mention two of them. Often, the term “geoinformatics” is used in place of geographic information science. This is deliberately done because the International Standardization Committee considers geographic information a specialization of information technology. Consequently, formerly prevailing paradigms have been pushed back. Cartography is no longer primarily an “engineering art”. Data capture from aerial and satellite imagery is not above all precision engineering, optics, and applied mathematics. Property cadastre is not exclusively measuring art and legislation. The new philosophy is applied information technology, in particular the Internet – static and mobile, data bases, and a braiding of components from computer science. The handbook is concerned with explaining this common ground. ISO and OGC standards are referenced in many chapters as an important foundation for geographic information applications. This second edition of the handbook follows the format of the successful first edition. Because of the rapid advancement of geographic information technology every chapter has been revised. The authors, experts in their fields, were keen to provide the latest development in the technology of their field. Several new chapters have been added: Big Data Analytics, Surveying, Building Information Modeling, Open Source GIS, and Smart Cities. The handbook is subdivided into three parts, Basics and Computer Science, Geographic Information, and Applications. Although the structure may be quite clear, not every topic can be absolutely allocated to one of the three parts. The first part of the book begins with a chapter about modeling; the basic concepts for abstracting real-world geographic phenomena into data for use in an information system. Other chapters in this part are linked to the basics of information technology and mathematics. The v vi Preface chapters about big data and the geospatial semantic web (Part 2) illuminate developments of information technology that are essential for spatial data that are often characterized by huge volumes of data, as well as multicultural and multilinguistic environments, but are still developing rapidly. The second part addresses the specific foundations of geographic information. Chap. 6 starts with a little textbook about geographic information. Other chapters present geodesy and coordinate reference systems, data acquisition, remote sensing, metadata, geometry, and cartography, among others. Out of the multiplicity of applications only a limited number of typical cases can be presented in the third part of the book. However, the selection focuses on the broad range of the field and stimulates the reader to gain a better understanding and, perhaps, some new ideas. The authors, from all parts of the world, convey their distinctive perspectives of the same large field of geographic information. While in Europe geographic information is driven by legislative and organizational framework, with respect to property cadaster and planning in particular, in other parts of the world it is more technology driven. The development of applications reaches from proprietary systems to the open-source community. The handbook allows for both. Large software vendors keep playing a predominant role in governmental systems and/or demanding developments. This is illustrated in the chapters about marine GIS and hydrography, energy suppliers, and defense. The open-source concept is addressed in the chapter of the same name. Geology, which has always been a driving force for development in cartography and geographic information, may today count for both sides, administrative systems and the open-source world. Access to the Internet via cell-phone networks has widely abolished the distinction between static and mobile applications. Mobile applications mainly differ from static ones in their specific tasks. This topic is addressed in the chapters Geospatial Web Services, Location-Based Services, and GIS in Transportation. Economically relevant applications are fully developed and in daily operation but only because they were preceded by research activities like those covered in several of the handbook chapters, such as in Change Detection and Marine GIS with a focus on marine ecology. What is the distinction between a textbook and a handbook? A handbook is like a collection of many small textbooks. Every chapter conveys a good and complete summary of a subject area with references for further study. The authors have solved their tasks in different ways. Some of them have prepared the subject like a tutorial to help understand a lecture. An example is the chapter about positional accuracy improvement, including an introduction to adjustment theory in Chap. 2. Other authors explain the basics and complement these with elaborated examples, as is, e.g., done in the section about spatial databases in Chap. 3. Further on, the handbook promotes the harmonization of content and terminology, primarily in Chap. 12 about standards. As described above, geographic information is a diversified subject that resists full documentation in one single book. We hope that our selection of topics reflects all important and many typical perspectives, and that the numerous references to other sources may help the reader to proceed where coverage by the handbook ends. Neubrandenburg and Vienna, VA May 2022 Wolfgang Kresse David M. Danko Abbreviations AIP API ARP ASCII ATS dBsm CORBA DCOM DEM DIP DOP DSM DSNU DTM ECEF ETS FITS FOM FOV GML GNSS GRP HARLIE ICS IERS IFOV IRI ISBN IUT IXIT JPEG LIDAR MCES MIME OAIS OASIS ODP OGC OSE OWL PDI PHD Archival Information Package Application Programming Interface aperture reference point American Standard Code for Information Interchange abstract test suite decibels referenced to a square meter Common Object Request Broker Architecture Distributed Component Object Model Digital Elevation Model dissemination information package Digital Orthophoto Digital Surface Model dark signal non uniformity Digital Terrain Model Earth Centered Earth Fixed executable test suite Flexible Image Transport System figure of merit Field of View Geography Markup Language Global Navigation Satellite System ground reference point Holographic Airborne Rotating Lidar Instrument Implementation Conformance Statement International Earth Rotation Service Instantaneous Field of View Internationalized Resource Identifier International Standard Book Number Implementation Under Test Implementation extra Information for Testing Joint Photographic Expert Group Light Detection and Ranging multichannel echo sounding Multipurpose Internet Mail Extensions Open Archival Information System Organization for the Advancement of Structured Information Open Distributed Processing Open Geospatial Consortium open systems environment Web Ontology Language preservation description information phase history data vii viii PRNU PSLR RAF RDF RFID SAR SBES SIP SNR SOAP SONAR SUT TIFF TOF TRF TRS UDDI UPA URI VRS WSDL XML XSLT Abbreviations pixel response non-uniformity peak side lobe ratio Reference Architecture Foundation Resource Description Framework Radio Frequency Identification Synthetic Aperture Radar single beam echosounder Submission Information Package signal-to-noise ratio Simple Object Access Protocol Sound Navigation and Ranging System Under Test Tagged Image File Format time of flight terrestrial reference frame terrestrial reference system Universal Description, Discovery and Integration ubiquitous public access Uniform Resource Identifier Vertical Reference System Web Services Description Language Extensible Markup Language Extensible Stylesheet Language Transformations Contents Part A Basics and Computer Science 1 2 Modeling of Geographic Information . . . . . . . . . . . . . . . . . . . . . . . . . John Herring, Charles Roswell, and David Danko 1.1 Abstracting the Real World . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Computer-Aided Design (CAD) . . . . . . . . . . . . . . . . . . . . 1.1.2 Geometry Centric Models . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Object Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 Ontological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Modeling Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Model-Driven Architecture for Applications . . . . . . . . . . . . . 1.3.2 Modeling Features with Taxonomies and Controlled Vocabularies 1.3.3 Modeling the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 Modeling with Geometry . . . . . . . . . . . . . . . . . . . . . . . . 1.3.5 Modeling Geometry with Topology . . . . . . . . . . . . . . . . . . 1.3.6 Modeling with Coverages . . . . . . . . . . . . . . . . . . . . . . . . 1.3.7 Unified Modeling Language . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mathematics and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frank Gielsdorf, Simon Schönrock, and Roland Pesch 2.1 Data Integration with Adjustment Techniques . . . . . . . . . . . . . . . 2.1.1 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Arithmetic Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Weighted Arithmetic Mean . . . . . . . . . . . . . . . . . . . . . 2.1.4 Adjustment with Several Unknown Parameters . . . . . . . . . 2.1.5 The Law of Error Propagation . . . . . . . . . . . . . . . . . . . 2.1.6 Error Propagation for Linear Functions . . . . . . . . . . . . . . 2.1.7 The Importance of Covariances . . . . . . . . . . . . . . . . . . . 2.1.8 Adjustment and Error Propagation . . . . . . . . . . . . . . . . . 2.1.9 Positional Accuracy Improvement as an Adjustment Problem 2.1.10 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.11 GNSS Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.12 Improving Absolute Geometry . . . . . . . . . . . . . . . . . . . 2.1.13 Improving Relative Geometry . . . . . . . . . . . . . . . . . . . . 2.2 2-D Datum Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Centroid Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 The Four-Parameter (Helmert) Transformation . . . . . . . . . 2.2.3 Six-Parameter (Affine) Transformation . . . . . . . . . . . . . . 2.2.4 Three-Parameter Transformation . . . . . . . . . . . . . . . . . . 2.2.5 Five-Parameter Transformation . . . . . . . . . . . . . . . . . . . 3 3 4 4 4 5 5 7 9 10 10 11 11 12 12 17 .. 21 . . . . . . . . . . . . . . . . . . . . 22 23 23 24 25 25 26 26 28 28 29 29 29 30 31 31 31 32 33 34 . . . . . . . . . . . . . . . . . . . . ix x Contents 2.2.6 Conformal Transformation with Complex Polynomials 2.2.7 Modeling of Correlations . . . . . . . . . . . . . . . . . . 2.2.8 Reasons for Correlations . . . . . . . . . . . . . . . . . . . 2.2.9 Rubber Sheeting . . . . . . . . . . . . . . . . . . . . . . . . 2.2.10 Stochastic Modeling . . . . . . . . . . . . . . . . . . . . . 2.2.11 Functional Modeling . . . . . . . . . . . . . . . . . . . . . 2.2.12 Modeling of Point Identities . . . . . . . . . . . . . . . . . 2.2.13 Geometrical Constraints, Known Relative Geometry . 2.2.14 Matching and Constraint Snooping . . . . . . . . . . . . 2.2.15 Topology and Extraction of Subgraphs . . . . . . . . . . 2.2.16 Geometrical Parameterization of Subgraphs . . . . . . . 2.2.17 Search for Candidates . . . . . . . . . . . . . . . . . . . . 2.2.18 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.19 Search for Geometrical Constraints . . . . . . . . . . . . 2.2.20 Interaction of Matching and Adjustment . . . . . . . . . 2.3 Geostatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Geostatistical Analysis and Modeling . . . . . . . . . . . 2.3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Data and Procedure . . . . . . . . . . . . . . . . . . . . . . 2.3.4 Results and Outlook . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thomas Brinkhoff and Wolfgang Kresse 3.1 Historical Background . . . . . . . . . . . . . . . . . 3.1.1 Features of a Database . . . . . . . . . . . . 3.1.2 Database Architecture . . . . . . . . . . . . 3.1.3 Operational Requirements . . . . . . . . . . 3.1.4 Data Models . . . . . . . . . . . . . . . . . . 3.2 Relational Model . . . . . . . . . . . . . . . . . . . . . 3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Tables . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Relationships . . . . . . . . . . . . . . . . . . 3.2.4 Normalization . . . . . . . . . . . . . . . . . 3.2.5 Integrity Rules . . . . . . . . . . . . . . . . . 3.2.6 Set Theory . . . . . . . . . . . . . . . . . . . 3.2.7 Structured Query Language . . . . . . . . . 3.2.8 Entity–Relationship Model . . . . . . . . . 3.2.9 Entities . . . . . . . . . . . . . . . . . . . . . . 3.2.10 Relations . . . . . . . . . . . . . . . . . . . . 3.2.11 Difference to Other Models . . . . . . . . . 3.3 Object-Oriented Model . . . . . . . . . . . . . . . . . 3.3.1 Motivation for the Object-Oriented Model 3.3.2 Foundations . . . . . . . . . . . . . . . . . . . 3.3.3 Features . . . . . . . . . . . . . . . . . . . . . 3.3.4 Object-Oriented Constructs . . . . . . . . . 3.3.5 Manifesto . . . . . . . . . . . . . . . . . . . . 3.3.6 Comparisons of OODBS and RDBS . . . . 3.3.7 Object Relational DBMS (ORDBMS) . . 3.4 NoSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Indexing with B-Trees . . . . . . . . . . . . . . . . . . 3.5.1 B+ -Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 35 35 36 36 36 37 38 38 39 39 40 40 41 42 42 42 44 45 47 50 .............. 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 54 55 56 56 57 57 57 58 59 62 62 63 65 65 65 66 66 66 66 66 67 67 67 68 68 69 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents xi 3.6 Spatial Databases . . . . . . . . . . . . . . . . . . . . . 3.6.1 Geometry Model . . . . . . . . . . . . . . . . 3.6.2 Topological and Network Models . . . . . 3.6.3 Raster Models . . . . . . . . . . . . . . . . . 3.7 Spatial Query Processing . . . . . . . . . . . . . . . . 3.7.1 Basic Spatial Queries . . . . . . . . . . . . . 3.7.2 Multistep Query Processing . . . . . . . . . 3.7.3 Filtering by Approximations . . . . . . . . 3.8 Spatial Indexing . . . . . . . . . . . . . . . . . . . . . 3.8.1 Basic Techniques . . . . . . . . . . . . . . . 3.8.2 Quadtrees . . . . . . . . . . . . . . . . . . . . 3.8.3 Grid Files . . . . . . . . . . . . . . . . . . . . 3.8.4 R-trees . . . . . . . . . . . . . . . . . . . . . . 3.9 Network Databases . . . . . . . . . . . . . . . . . . . 3.9.1 Network Analysis . . . . . . . . . . . . . . . 3.9.2 Partitioning and Hierarchies of Networks . 3.10 Raster Databases . . . . . . . . . . . . . . . . . . . . . 3.10.1 Georeferencing and Spatial Selections . . 3.10.2 Access Optimization . . . . . . . . . . . . . 3.11 Spatiotemporal Databases . . . . . . . . . . . . . . . 3.11.1 Database Schema . . . . . . . . . . . . . . . 3.11.2 Basic Queries . . . . . . . . . . . . . . . . . . 3.11.3 Spatiotemporal Indexing . . . . . . . . . . . 3.12 Spatial Database Systems . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 70 72 72 74 74 75 75 77 77 79 81 82 85 86 87 88 88 89 89 89 90 91 92 92 ....... 95 Encoding of Geographic Information . . . . . . . . . . . . . . . . . . Clemens Portele 4.1 Encoding Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Data Interchange . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Encoding Rules . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 The Role of Multiple Encoding Rules . . . . . . . . . . 4.2 Sample Encoding Rules . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 GML Encoding Rule . . . . . . . . . . . . . . . . . . . . 4.2.2 ISO/TS 19139-1 Encoding Rule . . . . . . . . . . . . . 4.3 Commonly Used Formats to Encode Geographic Information References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Big Data Analytics . . . . . . . . . . . Erik Hoel 5.1 Overview . . . . . . . . . . . . . 5.2 Definitions . . . . . . . . . . . . 5.3 Example Problems . . . . . . . 5.4 Big Data Analysis Concepts . 5.4.1 Summarizing Data . . 5.4.2 Identify Locations . . 5.4.3 Pattern Analysis . . . 5.4.4 Cluster Analysis . . . 5.4.5 Proximity Analysis . 5.4.6 Predictive Modeling . 5.5 Technology and Tools . . . . . 5.5.1 Available Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 96 97 102 102 102 103 104 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 108 110 112 112 112 113 113 113 114 114 114 xii Contents 5.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Part B 6 7 8 Geographic Information Geographic Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . Norbert Bartelme 6.1 Architecture of a GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Information and Data . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Geographic (Geospatial) Information . . . . . . . . . . . . . . 6.1.3 Geographic Information System Definitions . . . . . . . . . . 6.1.4 Classical GISs and Recent Modifications . . . . . . . . . . . . 6.2 GIS Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Data Capture Functions . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Update Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.4 Structuring Functions . . . . . . . . . . . . . . . . . . . . . . . . 6.2.5 Transformation Functions . . . . . . . . . . . . . . . . . . . . . 6.2.6 Storage, Checking, Archiving, and Data Transfer Functions 6.2.7 Data Request and Retrieval Functions . . . . . . . . . . . . . . 6.2.8 Analysis Functions . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.9 Design and Presentation Functions . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Change Detection . . . . . . . . . . . . . . . . . . . . . . . . . Jérôme Théau 7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Development of Change Detection over Time . . . . 7.3 Overview of Methods . . . . . . . . . . . . . . . . . . . 7.3.1 Changes on the Earth’s Surface . . . . . . . . 7.3.2 Imagery Characteristics Regarding Changes 7.3.3 Changes in Imagery . . . . . . . . . . . . . . . 7.3.4 Data Selection and Preprocessing . . . . . . 7.3.5 Units of Analysis . . . . . . . . . . . . . . . . 7.3.6 Change Detection Methods . . . . . . . . . . 7.4 Typical Applications . . . . . . . . . . . . . . . . . . . . 7.4.1 Forestry and Conservation . . . . . . . . . . . 7.4.2 Agriculture and Rangelands . . . . . . . . . . 7.4.3 Urban . . . . . . . . . . . . . . . . . . . . . . . 7.4.4 Ice and Snow . . . . . . . . . . . . . . . . . . . 7.4.5 Ocean and Coastal . . . . . . . . . . . . . . . . 7.5 Probable Future Directions . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 121 123 123 124 126 126 127 129 130 131 132 134 135 147 148 . . . . . . . . . . . . . 151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geodesy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matthias Becker 8.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Reference Systems and Reference Frames . . . . . . . . . . . . 8.4 Coordinate Reference System . . . . . . . . . . . . . . . . . . . . 8.4.1 Coordinate Systems and Coordinate Types . . . . . . . 8.4.2 International Celestial Reference System and Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 151 152 152 152 152 152 153 153 158 158 158 158 158 158 158 159 . . . . . . . 161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 162 163 163 164 165 Contents xiii 9 8.4.3 International Terrestrial Reference System and Frame . . . . . . . 8.4.4 World Geodetic System (WGS 84) . . . . . . . . . . . . . . . . . . . 8.4.5 Geodetic Reference System 1980 . . . . . . . . . . . . . . . . . . . 8.5 Height Systems and the Vertical Datum . . . . . . . . . . . . . . . . . . . . . 8.5.1 Definition of Height in Geodesy . . . . . . . . . . . . . . . . . . . . 8.5.2 Orthometric Height (H O ) . . . . . . . . . . . . . . . . . . . . . . . . 8.5.3 Normal Heights (H  ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6 Geopotential Models and the Geoid . . . . . . . . . . . . . . . . . . . . . . . 8.7 Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.1 Timescales and GNSS Times . . . . . . . . . . . . . . . . . . . . . . 8.8 Conversions, Transformations, and Projections . . . . . . . . . . . . . . . . 8.8.1 Conversion Between Ellipsoidal and Cartesian Coordinates . . . 8.8.2 Local Geodetic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 8.8.3 Coordinate Transformation and Terrestrial Frame Transformation 8.8.4 Projections and Plane Coordinates . . . . . . . . . . . . . . . . . . . 8.8.5 Meridian Strip Projection (Transverse Mercator Projection) . . . 8.8.6 Universal Transverse Mercator System . . . . . . . . . . . . . . . . 8.8.7 Datum Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 8.9 Coordinate Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.9.1 GNSS Coordinate Determination . . . . . . . . . . . . . . . . . . . . 8.9.2 Terrestrial and Local Coordinate Determination . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 167 167 167 167 168 169 170 171 172 172 173 174 175 176 176 177 178 179 180 181 182 Data Acquisition in Geographic Information Systems . Jan Skaloud, Michael Cramer, and Norbert Haala 9.1 Optical Sensors . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Frame Cameras . . . . . . . . . . . . . . . . 9.1.2 Line Sensors . . . . . . . . . . . . . . . . . . 9.1.3 Lidars . . . . . . . . . . . . . . . . . . . . . . 9.2 Navigation Sensors . . . . . . . . . . . . . . . . . . . 9.2.1 Mapping Prerequisites . . . . . . . . . . . . 9.2.2 Satellite Navigation . . . . . . . . . . . . . . 9.2.3 Inertial Navigation . . . . . . . . . . . . . . 9.2.4 Integrated Navigation . . . . . . . . . . . . . 9.2.5 Geometrical Relations . . . . . . . . . . . . 9.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . 9.3.1 From 2-D to 3-D . . . . . . . . . . . . . . . . 9.3.2 Camera Pose in a Homogeneous Form . . 9.3.3 Pinhole Camera . . . . . . . . . . . . . . . . 9.3.4 Image Coordinates . . . . . . . . . . . . . . 9.3.5 Imaging Formation Model . . . . . . . . . . 9.3.6 Scene from Two Views . . . . . . . . . . . . 9.3.7 Scene from Multiple Views . . . . . . . . . 9.3.8 Feature Matching . . . . . . . . . . . . . . . 9.4 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . 9.4.1 Principle . . . . . . . . . . . . . . . . . . . . . 9.4.2 Parameters . . . . . . . . . . . . . . . . . . . 9.4.3 Optical Distortion Models . . . . . . . . . . 9.4.4 Observation Models . . . . . . . . . . . . . . 9.4.5 Estimation . . . . . . . . . . . . . . . . . . . . 9.4.6 Adopted Approaches . . . . . . . . . . . . . 185 186 190 192 196 196 197 200 200 202 204 204 204 205 206 207 208 210 211 215 215 217 218 218 220 221 . . . . . . . . . . . . . . 185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Contents 9.5 Mapping Products . . 9.5.1 Surfaces . . . 9.5.2 Orthophotos References . . . . . . . . . . . 10 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 224 227 228 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Erik Borg, Sina C. Truckenbrodt, Angela Lausch, Peter Dietrich, and Karsten Schmidt 10.1 What Is Remote Sensing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 The Nature of Electromagnetic Waves . . . . . . . . . . . . . . . . 10.2.2 Radiation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Electromagnetic Spectrum and Remote Sensing Working Ranges 10.2.4 Interaction of Electromagnetic Radiation with Natural Media . . 10.3 Technical Basics of Remote Sensing Data Acquisition . . . . . . . . . . . . 10.3.1 Spatial, Spectral, Radiometric, and Temporal Resolution of Remote Sensing Systems . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Passive Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 Active Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.4 Earth Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.2 Housekeeping Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.3 Additional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.4 In Situ Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Processing of Remote Sensing Data . . . . . . . . . . . . . . . . . . . . . . . 10.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.2 Thematic Processing for Information Extraction . . . . . . . . . . 10.5.3 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.1 Remote Sensing for Weather and Climate Research . . . . . . . . 10.6.2 Maritime Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . 10.6.3 Remote Sensing of Inland Waters . . . . . . . . . . . . . . . . . . . 10.6.4 Remote Sensing for Geomorphology and Geology . . . . . . . . . 10.6.5 Forest Applications of Remote Sensing . . . . . . . . . . . . . . . . 10.6.6 Agricultural Applications of Remote Sensing . . . . . . . . . . . . 10.6.7 Remote Sensing of the Abiotic Diversity . . . . . . . . . . . . . . . 10.6.8 Urban Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.9 Archeological Applications of Remote Sensing . . . . . . . . . . . 10.6.10 Application of Remote Sensing to Hazard and Disaster Information Gathering . . . . . . . . . . . . . . . . . . 10.7 Recent and Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Surveying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vladimir Golubev 11.1 Surveying Instruments . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Angle Meters and Measurement . . . . . . . . . . . . . . . . . . . 11.2.1 Theodolites . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Measurement of Horizontal Angles with a Theodolite 11.2.3 Classifications of Theodolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 232 233 233 234 234 241 241 242 244 247 250 250 250 251 251 251 255 258 261 261 261 263 263 264 264 265 266 268 268 269 269 270 . . . . . . . 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 283 283 284 285 Contents xv 11.3 Distance Measurement . . . . . . . . . . . . . . . . . . . . 11.3.1 Principle of Electronic Distance Measurement 11.3.2 Total Stations . . . . . . . . . . . . . . . . . . . . . 11.4 Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.1 Leveling Methods . . . . . . . . . . . . . . . . . . 11.4.2 Leveling Equipment . . . . . . . . . . . . . . . . . 11.5 Global Navigation Satellite Systems . . . . . . . . . . . . 11.5.1 Principles of a GNSS . . . . . . . . . . . . . . . . 11.5.2 Differential GNSS . . . . . . . . . . . . . . . . . . 11.6 More Surveying Methods . . . . . . . . . . . . . . . . . . . 11.6.1 Traversing . . . . . . . . . . . . . . . . . . . . . . . 11.6.2 Point Measurement . . . . . . . . . . . . . . . . . 11.6.3 Network Measurement . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geometry and Topology . . . . . . . . . . . . . . . . . . . . . . . . . . Gerhard Gröger and Betsy George 12.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.1 0-D, 1-D, and 2-D Geometries . . . . . . . . . . . . . 12.1.2 Special Cases: 2-D as Embedding Space and 2.5-D 12.1.3 3-D Geometries . . . . . . . . . . . . . . . . . . . . . . 12.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Topological Relations . . . . . . . . . . . . . . . . . . . 12.2.2 Topological Data Models . . . . . . . . . . . . . . . . 12.3 Graph Theory and the Königsberg Bridge Problem . . . . . . 12.3.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.2 Finding a Eulerian Circuit in a Graph . . . . . . . . . 12.3.3 Famous Applications . . . . . . . . . . . . . . . . . . . 12.3.4 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . 12.3.5 Future Directions . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cartography . . . . . . . . . . . . . . . . . . . . . . . Aileen Buckley, Paul Hardy, and Kenneth Field 13.1 Cartography in Review . . . . . . . . . . . . . 13.1.1 Brief History of Cartography . . . . 13.1.2 Cartography and GIS . . . . . . . . . 13.2 Types of Maps . . . . . . . . . . . . . . . . . . 13.2.1 Reference Maps . . . . . . . . . . . . 13.2.2 Charts . . . . . . . . . . . . . . . . . . 13.2.3 Thematic Maps . . . . . . . . . . . . . 13.2.4 Qualitative Thematic Maps . . . . . 13.2.5 Quantitative Thematic Maps . . . . 13.3 Cartographic Compilation . . . . . . . . . . . 13.3.1 Map Scale . . . . . . . . . . . . . . . . 13.3.2 Map Projections . . . . . . . . . . . . 13.3.3 Selection . . . . . . . . . . . . . . . . 13.3.4 Generalization . . . . . . . . . . . . . 13.3.5 Classification . . . . . . . . . . . . . . 13.4 Symbols . . . . . . . . . . . . . . . . . . . . . . 13.4.1 Properties of Symbols . . . . . . . . 13.4.2 Bivariate and Multivariate Symbols 13.4.3 Design Guidelines for Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 286 286 288 289 290 291 291 293 294 294 295 295 296 . . . . . . . . 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 298 299 299 301 302 304 308 308 309 309 311 312 312 . . . . . . . . . . . . . . . . . . 315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 316 316 317 317 318 318 320 320 325 325 326 327 328 328 328 328 332 332 xvi Contents 13.5 Color . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.1 Properties of Color . . . . . . . . . . . . 13.5.2 Color Mixing . . . . . . . . . . . . . . . . 13.5.3 Common Color Models . . . . . . . . . 13.5.4 Design Guidelines for Color . . . . . . . 13.5.5 Color for Qualitative Thematic Maps . 13.5.6 Color for Quantitative Thematic Maps 13.6 Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6.1 Properties of Type . . . . . . . . . . . . . 13.6.2 Design Guidelines for Type . . . . . . . 13.6.3 Placement Guidelines for Type . . . . . 13.7 Relief Portrayal . . . . . . . . . . . . . . . . . . . . 13.7.1 Absolute Relief Portrayal . . . . . . . . 13.7.2 Relative Relief Portrayal . . . . . . . . . 13.8 Map Design . . . . . . . . . . . . . . . . . . . . . . 13.8.1 Legibility . . . . . . . . . . . . . . . . . . 13.8.2 Visual Contrast . . . . . . . . . . . . . . . 13.8.3 Figure-Ground Organization . . . . . . 13.8.4 Visual Hierarchy . . . . . . . . . . . . . . 13.9 Layout . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.1 Map Elements . . . . . . . . . . . . . . . 13.9.2 Proportion . . . . . . . . . . . . . . . . . . 13.9.3 Balance . . . . . . . . . . . . . . . . . . . 13.9.4 Harmony . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 335 336 337 337 339 339 340 340 341 342 343 343 344 345 345 345 347 347 348 348 350 350 350 351 Geospatial Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 David Danko 14.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 14.2 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 14.2.1 Categories of Interoperability . . . . . . . . . . . . . . . . . . . . . . 356 14.2.2 Interoperability Enablers . . . . . . . . . . . . . . . . . . . . . . . . . 356 14.2.3 Geospatial Interoperability . . . . . . . . . . . . . . . . . . . . . . . 356 14.3 Applying Geospatial Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 356 14.3.1 Catalog Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 14.3.2 Processing/Data Analysis Environment . . . . . . . . . . . . . . . . 359 14.3.3 Production Environment . . . . . . . . . . . . . . . . . . . . . . . . . 359 14.3.4 Archival Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 359 14.3.5 Geoweb Services Environment . . . . . . . . . . . . . . . . . . . . . 359 14.4 Economic Benefits of Geospatial Metadata . . . . . . . . . . . . . . . . . . . 359 14.4.1 Savings in Geospatial Resource Productionand Management . . 359 14.4.2 Geospatial Resource User Applications . . . . . . . . . . . . . . . . 360 14.5 Geospatial Metadata Element Types . . . . . . . . . . . . . . . . . . . . . . . 361 14.6 Applying Metadata to the Data . . . . . . . . . . . . . . . . . . . . . . . . . . 363 14.6.1 What Is a Dataset? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 14.7 Geospatial Metadata Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 365 14.7.1 ISO 19115-1:2014 Geographic information –Metadata – Part 1: Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 14.7.2 ISO 19115-2:2018 Geographic Information –Metadata – Part 2: Extension for Acquisitionand Processing . . . . . . . . . . . . . . . 369 14.7.3 ISO/TS 19115-3:2016 Geographic Information –Metadata – XML Schema Implementationfor Fundamental Concepts . . . . . . . . 370 14.7.4 ISO 19157:2013 Geographic Information –Data Quality . . . . . 371 Contents xvii 15 14.7.5 ISO 19157-2:2016 Geographic Information – DataQuality – Part 2: XML Schema Implementation . . . . . . . . . . . . . . . . . 14.7.6 ISO 19110:2016 Geographic Information – Methodology for Feature Cataloguing . . . . . . . . . . . . . . . . 14.7.7 ISO 15836 –1:2017 Information and Documentation – The Dublin Core Metadata Element Set – Part 1: Core Elements 14.8 Geospatial Metadata Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8.1 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8.2 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 377 378 379 380 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wolfgang Kresse, David Danko, and Kian Fadaie 15.1 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.2 Training, Knowledge, and Human Resources . . . . . . . . 15.1.3 Information Assurance . . . . . . . . . . . . . . . . . . . . . . 15.1.4 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.5 Standards—De Jure, De Facto, Industry . . . . . . . . . . . 15.2 Basics of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.1 Characteristics of Standards . . . . . . . . . . . . . . . . . . . 15.2.2 International Standardization Organizations and Consortia 15.2.3 Formal International Standardization Organizations . . . . 15.3 Geomatics Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.1 ISO/TC 211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.2 Roadmap to the ISO 19100 Standards . . . . . . . . . . . . . 15.3.3 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.4 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.5 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.7 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.8 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.9 Temporal schema (ISO 19108) . . . . . . . . . . . . . . . . . 15.3.10 Catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.11 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.12 Observations and Measurements (ISO 19156) . . . . . . . . 15.3.13 Digital Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.14 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.15 Ubiquitous Public Access (UPA) . . . . . . . . . . . . . . . . 15.3.16 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.17 Building Information Modeling . . . . . . . . . . . . . . . . 15.3.18 Theme-Oriented Standards . . . . . . . . . . . . . . . . . . . 15.3.19 Future of Geomatics Standardization . . . . . . . . . . . . . 15.4 Liaison Members of ISO/TC 211 . . . . . . . . . . . . . . . . . . . . . 15.4.1 Internal Liaison Members of ISO/TC 211 . . . . . . . . . . 15.4.2 External Liaison Organizations to ISO/TC 211 . . . . . . . 15.5 Open Geospatial Consortium . . . . . . . . . . . . . . . . . . . . . . . 15.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5.2 OGC Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5.3 The OGC Standards Development Process . . . . . . . . . . 15.5.4 OGC Standards . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 384 384 384 385 385 386 386 388 388 392 392 398 398 405 412 433 434 436 437 437 438 440 441 442 442 442 444 445 450 451 451 452 460 460 462 464 464 487 373 373 . . . . 383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 16 17 Contents Geospatial Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . Joan Masó 16.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Elements of Distributed Computing . . . . . . . . . . . . . . . 16.2.1 Client–Server Architecture . . . . . . . . . . . . . . . 16.2.2 Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.3 Levels of Protocol . . . . . . . . . . . . . . . . . . . . . 16.2.4 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.5 The Web Server . . . . . . . . . . . . . . . . . . . . . . 16.2.6 The Web Client . . . . . . . . . . . . . . . . . . . . . . 16.2.7 The URL Structure . . . . . . . . . . . . . . . . . . . . 16.2.8 The HTTP Message Structure . . . . . . . . . . . . . . 16.2.9 SOA and ROA Services on Top of a Web Server . . 16.2.10 RESTful Web Services . . . . . . . . . . . . . . . . . . 16.2.11 First Attempts to Visualize Maps in HTML . . . . . 16.2.12 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.13 Improvements in HTML5 . . . . . . . . . . . . . . . . 16.3 Geospatial Web Services . . . . . . . . . . . . . . . . . . . . . . 16.3.1 Service Types . . . . . . . . . . . . . . . . . . . . . . . . 16.3.2 Common Architecture for Geospatial Web Services 16.3.3 Visualization Services . . . . . . . . . . . . . . . . . . 16.3.4 Data Exchange Services . . . . . . . . . . . . . . . . . 16.3.5 Processing Services . . . . . . . . . . . . . . . . . . . . 16.3.6 Discovery Services . . . . . . . . . . . . . . . . . . . . 16.4 Integrated Geospatial Client . . . . . . . . . . . . . . . . . . . . 16.5 Deploying Web Services . . . . . . . . . . . . . . . . . . . . . . 16.6 The Emergence of APIs . . . . . . . . . . . . . . . . . . . . . . . 16.6.1 Geospatial APIs for Creating User Interfaces . . . . 16.6.2 Geospatial Web APIs . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 494 494 494 495 496 496 497 497 498 498 499 499 499 500 500 500 501 503 506 517 519 523 524 525 525 526 529 Geosemantic Interoperability and the Geospatial Semantic Web . . . . . . . Jean Brodeur 17.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2 What Is Semantics about? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 Semantics Through Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.4 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.5 Geosemantic Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.5.1 Communication: a Foundation for Geosemantic Interoperability 17.5.2 Heterogeneity in Geographic Information: a Barrier . . . . . . . . 17.5.3 Geosemantic Interoperability Depicted from a Communication Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.5.4 The Importance of Geosemantic Interoperability . . . . . . . . . . 17.6 Spatial Data Infrastructure and Geospatial Information Environment in Support of Geosemantic Interoperability . . . . . . . . . . . . . . . . . . . 17.6.1 Spatial Data Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 17.6.2 Geospatial Information Environment . . . . . . . . . . . . . . . . . 17.7 Geographic Information Standards – a Key Element for Geosemantic Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.8 Geospatial Semantic Web Aiming at Geosemantic Interoperability . . . . 17.8.1 A Brief Description of the Semantic Web . . . . . . . . . . . . . . 17.8.2 Embedding Geographic Information in the Semantic Web . . . . 531 531 532 532 533 534 534 535 535 537 537 538 538 539 541 541 546 Contents xix 17.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 18 19 Registration of Geospatial Information Elements . . C. Douglas O’Brien and Roger Lott 18.1 Background . . . . . . . . . . . . . . . . . . . . . . . 18.2 Requirements . . . . . . . . . . . . . . . . . . . . . . 18.3 Concept of a Register . . . . . . . . . . . . . . . . . 18.4 Register Versus Registry . . . . . . . . . . . . . . . 18.4.1 Versioning of Registers . . . . . . . . . . . 18.5 Registration Process . . . . . . . . . . . . . . . . . . 18.5.1 Register Owner . . . . . . . . . . . . . . . 18.5.2 Submitting Organization . . . . . . . . . . 18.5.3 Control Body . . . . . . . . . . . . . . . . . 18.5.4 Register Manager . . . . . . . . . . . . . . 18.5.5 Registry Manager . . . . . . . . . . . . . . 18.5.6 Register User . . . . . . . . . . . . . . . . . 18.6 Register Structure . . . . . . . . . . . . . . . . . . . 18.6.1 Elements Inherited from ISO 19135-1 . 18.7 Federated Registers . . . . . . . . . . . . . . . . . . 18.7.1 Set of Registers . . . . . . . . . . . . . . . 18.7.2 Reference to External Registers . . . . . 18.7.3 Register Maintenance and Access . . . . 18.8 Implementation of Registers . . . . . . . . . . . . . 18.8.1 Platform Independence . . . . . . . . . . . 18.8.2 Geospatial Web Services . . . . . . . . . . 18.8.3 Implications of ebRIM . . . . . . . . . . . 18.9 Example Registers . . . . . . . . . . . . . . . . . . . 18.9.1 Example: Code List Registers . . . . . . . 18.9.2 Example of Roles for a Feature Register 18.10 The EPSG Geodetic Parameter Registry . . . . . . 18.10.1 Coordinates and Coordinate Metadata . . 18.10.2 Registry Ownership and Management . . 18.10.3 Register Data Management . . . . . . . . 18.10.4 Registry Service Interface . . . . . . . . . 18.10.5 Registry User Interface . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 552 552 553 553 554 554 554 554 554 554 554 555 555 555 555 557 557 558 558 558 558 558 558 559 559 560 560 560 562 563 565 Security for Open Distributed Geospatial Information Systems . . . . . . . . Andreas Matheus 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.1 SOA Implementation Options . . . . . . . . . . . . . . . . . . . . . . 19.2 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.1 Thinking About the Threats – What Is the Enemy . . . . . . . . . 19.2.2 What Is the Web Browser Same Origin Policy? . . . . . . . . . . . 19.2.3 Which Requirements Are Geo-Specific? . . . . . . . . . . . . . . . 19.3 Standards for Interoperable Implementation of Security Functions . . . . 19.3.1 Standards for Implementing Confidentiality and Integrity . . . . . 19.3.2 Standards for Implementing Authentication . . . . . . . . . . . . . 19.3.3 Standards for Implementing Access Delegation and User Claims 19.3.4 Standards for Implementing Access Control . . . . . . . . . . . . . 567 567 568 568 569 569 570 570 572 573 574 574 xx Contents 19.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 Part C Applications 20 21 Cadastre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Markus Seifert and Martin Salzmann 20.1 International Standardization in the Fieldof Cadastre . . . . . . . . . . . . . 20.1.1 The European INSPIRE Data Specificationfor Cadastral Parcels 20.1.2 Land Administration Domain Model (LADM) . . . . . . . . . . . 20.2 Cadastre and Land Register in Germany . . . . . . . . . . . . . . . . . . . . . 20.2.1 History of the German Cadastre . . . . . . . . . . . . . . . . . . . . 20.2.2 Related Organizational Details . . . . . . . . . . . . . . . . . . . . . 20.2.3 The Land Register in Germany . . . . . . . . . . . . . . . . . . . . . 20.3 The German Cadastral System in the Digital Age . . . . . . . . . . . . . . . 20.3.1 Content of ALKIS (Nonspatial Information) . . . . . . . . . . . . . 20.3.2 Content of ALKIS (Spatial Information) . . . . . . . . . . . . . . . 20.3.3 The Integrated Cadastre Information Systemin Germany . . . . . 20.4 Cadastre and Land Register in The Netherlands . . . . . . . . . . . . . . . . 20.4.1 System of Key Registers . . . . . . . . . . . . . . . . . . . . . . . . . 20.4.2 Spatial Data Infrastructure in The Netherlands . . . . . . . . . . . 20.5 Cadastral and Land Register Data . . . . . . . . . . . . . . . . . . . . . . . . . 20.5.1 Public Registers of Deeds . . . . . . . . . . . . . . . . . . . . . . . . 20.5.2 Cadastre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.5.3 Cadastral Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6 Developments in the (Cadastral) Spatial Domain . . . . . . . . . . . . . . . 20.6.1 Case: 3-D Cadastre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.2 Case: Delimitation of Public Restrictions . . . . . . . . . . . . . . . 20.6.3 Case: Working Towards an Integrated Information Model . . . . 20.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 582 583 586 586 588 589 590 591 591 594 604 604 605 606 606 606 606 607 608 608 610 610 610 Building Information Modeling . . . . . . . . . . . . . . . . . . . . . . . . . Jörg Blankenbach and Ralf Becker 21.1 Introduction to Building Information Modeling . . . . . . . . . . . . 21.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.1 Component-Oriented Modeling . . . . . . . . . . . . . . . . . 21.2.2 Level of Development and Level of Accuracy . . . . . . . . 21.2.3 Aspect or Domain Models . . . . . . . . . . . . . . . . . . . . 21.2.4 Industry Foundation Classes (IFC) . . . . . . . . . . . . . . . 21.3 Collaboration Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.1 Organizational Collaboration . . . . . . . . . . . . . . . . . . 21.3.2 Collaboration Platform . . . . . . . . . . . . . . . . . . . . . . 21.4 BIM vs. GIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.1 Modeling Paradigm and Geometry Presentation . . . . . . 21.4.2 Standards: IFC vs. CityGML . . . . . . . . . . . . . . . . . . 21.4.3 Level of Development vs. Level of Detail, Accuracy . . . . 21.4.4 Content, Scale Range, and Coordinate Reference System . 21.5 Interoperability of BIM and GIM . . . . . . . . . . . . . . . . . . . . . 21.5.1 Model Transformation . . . . . . . . . . . . . . . . . . . . . . 21.5.2 Unified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.5.3 Multi-Model/Link Model . . . . . . . . . . . . . . . . . . . . 614 616 616 616 617 618 619 619 620 621 621 622 622 622 624 624 625 625 581 . . . . 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents xxi 21.6 Dissemination of BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 21.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 22 23 Location-Based Services . . . . . . . . . . . . . . . . . . . . . . Haosheng Huang 22.1 LBS Components . . . . . . . . . . . . . . . . . . . . . . 22.1.1 Mobile Devices . . . . . . . . . . . . . . . . . . 22.1.2 Positioning Technologies . . . . . . . . . . . . 22.1.3 Telecommunication Networks . . . . . . . . . 22.1.4 Service and Content Providers . . . . . . . . . 22.2 LBS Applications . . . . . . . . . . . . . . . . . . . . . . 22.2.1 Classification of LBS Applications . . . . . . 22.2.2 Example Applications and Services . . . . . . 22.3 Core Tasks in LBS . . . . . . . . . . . . . . . . . . . . . . 22.3.1 Positioning . . . . . . . . . . . . . . . . . . . . . 22.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . 22.3.3 Information Communication and Adaptation 22.4 Current Research Trends and Research Challenges . . 22.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine Geographic Information Systems . . . . . . . . . . . . . . . . . . . Mathias Jonas 23.1 Electronic Navigational Charts for Ship Operation at Sea . . . . . . 23.1.1 International Maritime Organization (IMO) . . . . . . . . . 23.2 Chart Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.2.1 Navigating the Vessel . . . . . . . . . . . . . . . . . . . . . . . 23.2.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.2.3 Basic Settings of Electronic Charts . . . . . . . . . . . . . . 23.2.4 Chart Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.2.5 Scale, Range, and Usage of a Chart . . . . . . . . . . . . . . 23.2.6 Areas for which Special Conditions Exist . . . . . . . . . . 23.2.7 Detailed Background Information (Info Box; Pick Report) 23.2.8 Depth Information and Safety Contour . . . . . . . . . . . . 23.2.9 Alarms and Status Indications . . . . . . . . . . . . . . . . . 23.2.10 Mode of Presentation . . . . . . . . . . . . . . . . . . . . . . . 23.2.11 Navigational Tools . . . . . . . . . . . . . . . . . . . . . . . . 23.2.12 Route Planning Functions . . . . . . . . . . . . . . . . . . . . 23.2.13 Route Monitoring Functions . . . . . . . . . . . . . . . . . . 23.2.14 Real-Time Ship and Environmental Data . . . . . . . . . . . 23.2.15 Look Ahead Function . . . . . . . . . . . . . . . . . . . . . . . 23.2.16 Predicting Own Ship’s Movement . . . . . . . . . . . . . . . 23.2.17 Integration with Other Navigational Systems . . . . . . . . 23.2.18 AIS Data in the Electronic Chart . . . . . . . . . . . . . . . . 23.3 Electronic Chart Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.1 Charted Nautical Information . . . . . . . . . . . . . . . . . . 23.3.2 Additional Navigational Data . . . . . . . . . . . . . . . . . . 23.3.3 Data Provision . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.4 Chart Corrections . . . . . . . . . . . . . . . . . . . . . . . . . 23.4 Data Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.4.1 WEND: A Charter and an Organizational Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 630 630 631 631 631 631 631 633 633 634 635 636 636 636 . . . . 639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 640 641 641 641 641 643 643 644 644 644 645 645 646 646 646 647 647 648 648 650 650 650 650 651 651 651 652 xxii Contents 23.5 23.6 Data Display . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic Charts as a Component of E-Navigation . . . . 23.6.1 The Universal Hydrographic Data Model S-100 23.6.2 Outlook for the Future . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 653 654 656 656 Geographic Information Systems in Agriculture . . . . . . . . . . . . . . . . . . Ralf Bill, Edward Nash, Görres Grenzdörffer, and Jens Wiebensohn 24.1 Spatial Data in Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1.2 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1.3 Internal Farm Geoinformation . . . . . . . . . . . . . . . . . . . . . 24.1.4 Other Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.2 Integrated Administration and Control System . . . . . . . . . . . . . . . . . 24.2.1 Land Parcel Identification System . . . . . . . . . . . . . . . . . . . 24.3 Precision Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.1 Precision as the Basis for Modern Agriculture . . . . . . . . . . . . 24.3.2 Spatial Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.3 Precision Farming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.4 Information-Driven Plant Production . . . . . . . . . . . . . . . . . 24.4 GIS on the Farm of Tomorrow . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.4.1 Smart Farming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.4.2 Trends in Farm Management . . . . . . . . . . . . . . . . . . . . . . 24.4.3 Standardization Activities in the Agricultural Information Domain 24.4.4 Crop-Production Standards and Traceability . . . . . . . . . . . . . 24.4.5 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 661 663 664 664 664 665 666 666 666 667 674 680 680 680 680 681 682 682 682 Geographic Information Systems in Defense . . . . . . . . . . . . . . Gerhard Joos 25.1 Background and History . . . . . . . . . . . . . . . . . . . . . . . 25.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.1 Coalition War Fighting Operation . . . . . . . . . . . . 25.2.2 Coalition Peacekeeping Operation . . . . . . . . . . . . 25.2.3 Counter-Insurgency Operation . . . . . . . . . . . . . . 25.2.4 Noncombatant Evacuation Operation . . . . . . . . . . 25.2.5 United Nations Humanitarian Aid Operation . . . . . 25.2.6 Coalition Sanctions Enforcement Operation . . . . . . 25.3 Situational Awareness . . . . . . . . . . . . . . . . . . . . . . . . . 25.3.1 Common Operational Picture . . . . . . . . . . . . . . . 25.3.2 Recognized Environmental Picture . . . . . . . . . . . 25.4 Network-Centric Warfare . . . . . . . . . . . . . . . . . . . . . . . 25.5 Core Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.5.1 NATO Core GIS . . . . . . . . . . . . . . . . . . . . . . . 25.6 Functional Area Services . . . . . . . . . . . . . . . . . . . . . . . 25.6.1 Command and Control . . . . . . . . . . . . . . . . . . . 25.6.2 Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.6.3 Intelligence, Surveillance, and Reconnaissance (ISR) 25.6.4 Air-Traffic Control . . . . . . . . . . . . . . . . . . . . . 25.6.5 AWACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.6.6 Confidence-Building Measures and Disarmament . . 25.6.7 Electronic Warfare Analysis Systems . . . . . . . . . . 686 687 687 687 687 687 688 688 688 688 690 690 691 691 692 692 693 693 694 694 695 695 659 . . . . . . . 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents xxiii 25.6.8 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 25.6.9 Training and Simulation . . . . . . . . . . . . . . . . . . . . . . . 25.7 Military Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.7.1 WGS84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.7.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 25.7.3 DIGEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.8 New Generation of Military Standards . . . . . . . . . . . . . . . . . . . . 25.8.1 DFDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.8.2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.8.3 NGIF/DGIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.9 Military Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.9.1 Level of Detail and Resolution . . . . . . . . . . . . . . . . . . . 25.9.2 Paper Maps and Their Scanned Georeferenced Counterparts . 25.9.3 Satellite Imagery and Aerial Photographs . . . . . . . . . . . . 25.9.4 Vector Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.9.5 Digital Terrain Elevation Data . . . . . . . . . . . . . . . . . . . 25.9.6 Multinational Geospatial Coproduction Program . . . . . . . . 25.9.7 Automated Air Facilities Intelligence Files . . . . . . . . . . . . 25.9.8 Digital Vertical Obstruction File . . . . . . . . . . . . . . . . . . 25.9.9 Digital Nautical Chart . . . . . . . . . . . . . . . . . . . . . . . . 25.9.10 Tactical Ocean Data . . . . . . . . . . . . . . . . . . . . . . . . . . 25.9.11 Tactical Pilotage Chart . . . . . . . . . . . . . . . . . . . . . . . . 25.9.12 Urban Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.9.13 General Regularly-distributed Information in Binary . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 696 696 696 696 696 698 698 698 698 700 700 700 700 700 701 701 702 702 702 702 702 703 703 704 Geographic Information Systems for Transportation . . . . . . . . . . . . . . . Knut Jetlund and Bettina Neuhäuser 26.1 GIS and Intelligent Transport Systems . . . . . . . . . . . . . . . . . . . . . . 26.2 Overall Legal Framework for Geospatial Information for Transportation in Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.1 INSPIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.2 PSI Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.3 ITS Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3 Transport Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.1 The Network System . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.3 Geometric Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.4 Logical Network (Topology) . . . . . . . . . . . . . . . . . . . . . . 26.3.5 Attribute Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.4 Transport Network Databases in Operation . . . . . . . . . . . . . . . . . . . 26.4.1 Road (and Multimodal) Databases . . . . . . . . . . . . . . . . . . . 26.4.2 Public Transport Databases . . . . . . . . . . . . . . . . . . . . . . . 26.5 Open Data Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.5.1 Open Government Data Portals . . . . . . . . . . . . . . . . . . . . . 26.5.2 OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.5.3 Google Transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.5.4 TomTom Maps APIs and HERE Location Services . . . . . . . . 26.6 Location Referencing Methods Used for Transportation . . . . . . . . . . . 26.6.1 Location Referencing Concepts . . . . . . . . . . . . . . . . . . . . 26.6.2 Location Referencing by Coordinates . . . . . . . . . . . . . . . . . 26.6.3 Location Referencing by Grids . . . . . . . . . . . . . . . . . . . . . 707 708 708 709 709 709 710 710 711 711 711 712 713 713 714 716 716 717 717 717 717 717 718 718 xxiv Contents 26.6.4 Precoded Location Referencing . . . . . . . . . . . . . . . . . . . . 26.6.5 Dynamic Location Referencing: AGORA-C™ and OpenLR™ . 26.7 Standards for Provision and Exchange . . . . . . . . . . . . . . . . . . . . . . 26.7.1 Standardization Stakeholders for Geospatial Information Related to Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.2 GDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.3 INSPIRE Transport Networks . . . . . . . . . . . . . . . . . . . . . . 26.7.4 TN-ITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.5 OpenTNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.6 Navigation Data Standard . . . . . . . . . . . . . . . . . . . . . . . . 26.7.7 OpenDRIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.8 DATEX II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.9 TPEG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.10 OJP–Open API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.7.11 NeTEx and SIRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kristine Asch, Jens Klump, Stephen J. Mathers, and Holger Kessler 27.1 Field Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.2 Geographic Information in Geology . . . . . . . . . . . . . . . . . . . . . . . 27.2.1 Influence of Geographic Information on Geology . . . . . . . . . 27.2.2 GI Standards in Geology . . . . . . . . . . . . . . . . . . . . . . . . . 27.3 Maps and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3.1 Geological Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.4 3-D Geological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.5 Types of Geological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.5.1 Expert-Controlled Geological Models . . . . . . . . . . . . . . . . . 27.5.2 Implicit Geological Models . . . . . . . . . . . . . . . . . . . . . . . 27.6 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.7 3-D Geological Modeling Software . . . . . . . . . . . . . . . . . . . . . . . 27.7.1 GoCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.7.2 3D GeoModeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.7.3 Leapfrog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.7.4 3-D Geology in Web GIS . . . . . . . . . . . . . . . . . . . . . . . . 27.7.5 Environmental and Subsurface Management . . . . . . . . . . . . . 27.7.6 Environmental Modeling Platforms . . . . . . . . . . . . . . . . . . 27.7.7 The Need for Subsurface Management Systems and Regulation . 27.8 Spatial Data Infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.1 INSPIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.2 OneGeology and OneGeology-Europe . . . . . . . . . . . . . . . . 27.8.3 OneGeology-Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.4 European Marine Observation and Data Network (EMODnet) . . 27.8.5 Geoscience Information in Africa . . . . . . . . . . . . . . . . . . . 27.8.6 Sensor-Based Landslide Early Warning System (SLEWS) . . . . 27.9 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718 719 719 720 720 720 721 721 721 722 722 723 723 723 724 725 729 731 732 732 732 735 735 736 737 737 738 739 741 741 741 741 741 741 743 743 744 744 745 746 747 749 750 751 751 Contents xxv 28 29 Geographic Information Systems in Energy and Utilities . . . . . . . . . . William Meehan, Robert G. Brook, and Jessica Wyland 28.1 GIS is now a Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.1.1 What is the Platform? . . . . . . . . . . . . . . . . . . . . . . . . . 28.1.2 Elements of a GIS Platform . . . . . . . . . . . . . . . . . . . . . 28.2 Overall Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2.1 Serious Challenges for Energy Companies and Utilities . . . . 28.2.2 GIS Provides Spatial Context for Solutions . . . . . . . . . . . 28.2.3 Spatial Approaches Can Frame New Problems . . . . . . . . . 28.2.4 Problem and GIS Solution Patterns . . . . . . . . . . . . . . . . 28.2.5 GIS Helps Energy Companies Transform . . . . . . . . . . . . 28.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.3.1 The Structure of an Energy/Utility GIS . . . . . . . . . . . . . . 28.3.2 Energy/Utility Data Models . . . . . . . . . . . . . . . . . . . . . 28.3.3 Cadastre and Land Management . . . . . . . . . . . . . . . . . . 28.3.4 Energy Company Workflows and GIS . . . . . . . . . . . . . . . 28.3.5 GIS and the Energy Company Value Chain Master Processes 28.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.1 GIS for Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.2 GIS for Energy Development . . . . . . . . . . . . . . . . . . . . 28.4.3 GIS for Gathering Infrastructure . . . . . . . . . . . . . . . . . . 28.4.4 GIS for Production Facilities . . . . . . . . . . . . . . . . . . . . 28.4.5 GIS for Transportation (Transmission) . . . . . . . . . . . . . . 28.4.6 GIS for Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.7 GIS for Retail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.8 GIS for Energy Consumers . . . . . . . . . . . . . . . . . . . . . 28.4.9 The GIS Platform and the Problem of Abstraction . . . . . . . 28.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geographic Information Systems in Health and Human Services . . William F. Davenhall and Christopher Kinabrew 29.1 What Is Health? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.1 What Is Public Health? . . . . . . . . . . . . . . . . . . . . . 29.2 A Brief History of Geography and GIS in HHS . . . . . . . . . . . 29.2.1 The Early Years of GIS in Health and Human Services . 29.2.2 The Early Adopters . . . . . . . . . . . . . . . . . . . . . . . 29.2.3 GIS Starting in Hospitals . . . . . . . . . . . . . . . . . . . . 29.3 Geography Is Destiny in Health . . . . . . . . . . . . . . . . . . . . . 29.3.1 Growth of GIS in Health and Human Services . . . . . . 29.4 GIS Relevance to Public Health . . . . . . . . . . . . . . . . . . . . . 29.4.1 Immunization . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4.2 Disease Surveillance, Outbreak Investigation, and Syndromic Surveillance . . . . . . . . . . . . . . . . . . 29.4.3 Public Health Emergency Preparedness and Response . . 29.4.4 Community Health Assessment, Planning, and Profiling 29.4.5 Environmental Health . . . . . . . . . . . . . . . . . . . . . . 29.4.6 Chronic Disease Prevention and Control . . . . . . . . . . 29.4.7 Infectious Diseases . . . . . . . . . . . . . . . . . . . . . . . 29.4.8 Animal and Veterinary Health . . . . . . . . . . . . . . . . 29.4.9 Human Services . . . . . . . . . . . . . . . . . . . . . . . . . 29.4.10 Hospitals and Health Systems . . . . . . . . . . . . . . . . . . . 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 756 756 757 757 758 758 758 762 763 763 764 764 764 767 768 768 770 770 771 772 774 776 776 777 778 779 . . . . . 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 782 783 783 786 787 788 788 789 789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 790 792 792 793 794 796 796 797 xxvi Contents 29.5 GIS and HHS Education . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.5.1 Biostatistics and GIS . . . . . . . . . . . . . . . . . . . . . . . . 29.5.2 Community Health and GIS . . . . . . . . . . . . . . . . . . . . 29.5.3 Epidemiology and GIS . . . . . . . . . . . . . . . . . . . . . . . 29.5.4 Global Health and GIS . . . . . . . . . . . . . . . . . . . . . . . 29.5.5 GIS and e-Health . . . . . . . . . . . . . . . . . . . . . . . . . . 29.6 An Abbreviated History of “Geomedicine” . . . . . . . . . . . . . . . . 29.6.1 Applied Geomedicine: An Early Blueprint . . . . . . . . . . . 29.6.2 Applied Geomedicine: Understanding Why Place Matters . 29.6.3 Applied Geomedicine: Its Value to Physicians and Patients . 29.6.4 Applied Geomedicine: Early Evidence of Adoption . . . . . 29.6.5 The Future of Applied Geomedicine . . . . . . . . . . . . . . . 29.6.6 COVID-19 Pandemic and GIS . . . . . . . . . . . . . . . . . . 29.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 797 797 798 798 798 799 799 800 800 800 801 801 802 802 Open Source – GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peter Löwe, Álvaro Anguix Alfaro, Andrea Antonello, Peter Baumann, Mario Carrera, Kim Durante, Marco Hugentobler, Steve Lime, Helena Mitasova, Dietmar Müller, Markus Neteler, Jack Reed, Christian Strobl, and Paul Wessel 30.1 History of FOSS Geospatial Tools . . . . . . . . . . . . . . . . . . . . . . . . 30.2 Free and Open Source Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 30.3 Desktop GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.3.1 QGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.3.2 GRASS GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.3.3 gvSIG, Open Source Software for Geomatics . . . . . . . . . . . . 30.4 Data Stores and Datacubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4.1 PostGIS – an Open Source Spatial Database . . . . . . . . . . . . . 30.4.2 rasdaman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4.3 GeoBlacklight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.5 Spatial Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.5.1 The Generic Mapping Tools (GMT) . . . . . . . . . . . . . . . . . . 30.5.2 Digital Field Mapping: Geopaparazzi . . . . . . . . . . . . . . . . . 30.5.3 GeoPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.6 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.6.1 MapServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.6.2 GeoServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.7 Geospatial Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.7.1 The Significance of Libraries for FOSS GIS: the MapServer Example . . . . . . . . . . . . . . . . . . . . . . . . . 30.7.2 PROJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.7.3 GDAL/OGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.7.4 Java Topology Suite (JTS) . . . . . . . . . . . . . . . . . . . . . . . . 30.7.5 GeoTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.7.6 Leaflet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.8 Virtual Globes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.8.1 NASA WorldWind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.8.2 GPlates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.9 OSGeoLive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 808 810 811 812 813 814 816 816 818 819 820 820 822 823 824 824 828 828 828 828 829 830 831 831 833 833 834 836 837 Contents xxvii 31 Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alan Leidner and George Percivall 31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1 Prelude to Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.2 Enterprise GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.3 Spatial Data Infrastructures . . . . . . . . . . . . . . . . . . . . . . 31.1.4 Key Characteristics of Information-Enabled Future Smart Cities/Societies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Unique Capabilities of Spatially Enabled Systems . . . . . . . . . . . . . 31.2.1 Precise Location – Instruments for Large-Scale Data Gathering 31.2.2 Geocoding Application to Integrate Location Identifiers . . . . 31.2.3 Building Multijurisdictional and National Data Layers . . . . . 31.2.4 Giving Location Identity to Sensors . . . . . . . . . . . . . . . . . 31.2.5 Spatial Queries and Linked Data . . . . . . . . . . . . . . . . . . . 31.2.6 Network, Routing, and Analysis . . . . . . . . . . . . . . . . . . . 31.2.7 Spatial Visualization: Maps and 3-D . . . . . . . . . . . . . . . . . 31.3 Spatial Data Options for Smart Cities . . . . . . . . . . . . . . . . . . . . . 31.3.1 The Spatially Enabled Data Explosion . . . . . . . . . . . . . . . 31.3.2 Major Spatial Technology Platforms . . . . . . . . . . . . . . . . . 31.4 Spatial Standards, Data Models, Architecture, and Organization . . . . . 31.4.1 The Role of Software Engineering in Smart Cities . . . . . . . . 31.4.2 Data Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4.3 Standardized Data Models for Key Smart City Use Cases . . . 31.4.4 Key Architectural Elements . . . . . . . . . . . . . . . . . . . . . . 31.4.5 The Spatial Organizational Infrastructure and Policy . . . . . . . 31.5 Use Categories and Use Cases for Spatially Smart Cities . . . . . . . . . 31.5.1 Delivering Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5.2 Citizen Engagement . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5.3 Property Assessment and Taxation . . . . . . . . . . . . . . . . . . 31.5.4 Customer Relationship Management (311 CRM Systems) . . . 31.5.5 Public Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5.6 Disaster and Emergency Preparedness and Response . . . . . . 31.5.7 Underground Infrastructure Management . . . . . . . . . . . . . . 31.5.8 Health Planning and Disease Control . . . . . . . . . . . . . . . . 31.5.9 Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5.10 Environmental Planning . . . . . . . . . . . . . . . . . . . . . . . . 31.5.11 Smarter Businesses and Organizations . . . . . . . . . . . . . . . 31.5.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6 Return on Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6.1 Quantifying Benefits of Smart Spatial Systems . . . . . . . . . . 31.6.2 Improved Revenue Collection: . . . . . . . . . . . . . . . . . . . . 31.6.3 Saving Lives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6.4 Improving Government Operations . . . . . . . . . . . . . . . . . 31.6.5 Summary of Benefit Findings . . . . . . . . . . . . . . . . . . . . . 31.7 Conclusion: Smart Cities Must Be Spatially Enabled . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 . . . . 846 846 847 848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 850 850 850 850 851 851 852 852 852 852 854 854 854 854 856 856 857 858 858 858 859 860 860 861 863 864 864 865 866 867 867 867 867 868 869 871 872 873 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939 List of Contributors About the Editors Wolfgang Kresse Wolfgang Kresse is an Emeritus Professor for Geographic Information Systems and Photogrammetry at the University of Applied Sciences Neubrandenburg, Germany. He also held a professorship for remote sensing and image processing at the Politechnika Koszalińska in Poland. As a visiting professor, he was affiliated to the Canada Centre for Remote Sensing in Ottawa (2002/2003) and to the University of Maine, USA (2008/2009). He is the Editor-in-chief of the German journal PFG, Photogrammetry, Remote Sensing and Geoinformation Science. Formerly, he worked as a software developer and customer trainer for Carl Zeiss Company with a focus on graphics, photogrammetry, and data exchange. In the ISO/TC 211 Geographic information/Geomatics he was the project leader of the ISO/TS 19159, parts 1 and 2, as well as the ISO 19165-1. He was also involved in the development of other ISO standards, as well as in standardization activities of the International Society for Photogrammetry and Remote Sensing (ISPRS) and of the European Spatial Data Research (EuroSDR). Wolfgang Kresse holds a Diploma Degree in Geodesy and a Ph.D. in Digital Cartography, both of the University of Bonn, Germany. He is the primary author of the book ISO Standards for Geographic Information. David Danko David Danko is a Senior Consultant for GIS standards, interoperability, and geographic metadata with Esri. He ensures that Esri software and services are interoperable and comply with the appropriate national, international, and industry standards. He has provided workshops on spatial data infrastructures, GIS standards and metadata around the globe and has participated in an advisory role in the development of many regional and national spatial data infrastructures. Before joining Esri, he worked for the U.S. Defense Mapping Agency (DMA), where he was responsible for developing and managing agency policies and programs to ensure standardization and interoperability. He also served as Project Manager for an international research and development initiative that resulted in the development of the Digital Chart of the World (DCW). xxix xxx List of Contributors During his career at DMA he has worked in the areas of remote sensing, analytical triangulation, imagery data extraction and cartographic production. For the last 25 years while at both Esri and DMA he served as a project leader in ISO Technical Committee 211 for the development of information technology standards. He led a team of national experts from 30 nations in the development of international metadata standard for geographic information (ISO 19115, ISO 19115-1, ISO 19115-2, ISO 19115-3, and ISO 19139). Mr. Danko has received several awards for his work. In 2009 he was awarded the prestigious OGC Gardels Award and in 2006 he received the INCITS Merit Award for his work in standards development on the US national committee. Mr. Danko has a B.S. (Geography/Cartography), Magna Cum Laude, from the University of Maryland. About the Authors Álvaro Anguix Alfaro gvSIG Association, Valencia, Spain Andrea Antonello HydroloGIS S.r.l., Bolzano, Italy Kristine Asch Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany Norbert Bartelme Institute of Geodesy, Graz University of Technology, Graz, Austria Peter Baumann Jacobs University, Bremen, Germany Matthias Becker Institute of Geodesy, Faculty of Civil and Environmental Engineering, Technical University of Darmstadt, Darmstadt, Germany Ralf Becker Geodetic Institute and Chair for Computing in Civil Engineering and Geo Information System, RWTH Aachen University, Aachen, Germany Ralf Bill Faculty for Agricultural and Environmental Sciences, Rostock University, Rostock, Germany Jörg Blankenbach Geodetic Institute and Chair for Computing in Civil Engineering and Geo Information Systems, RWTH University Aachen, Aachen, Germany Erik Borg German Remote Sensing Data Center, German Aerospace Center (DLR), Neustrelitz, Germany Thomas Brinkhoff Institute for Applied Photogrammetry and Geoinformatics (IAPG), Jade University of Applied Sciences, Oldenburg, Germany Jean Brodeur Recherche GéoSémantic, Sherbrooke, Québec, Canada Robert G. Brook Hecatic Labs, Los Angeles, CA, USA; Neara, Reno, NV, USA Aileen Buckley Esri, Redlands, CA, USA List of Contributors xxxi Mario Carrera gvSIG Association, Valencia, Spain Michael Cramer Institute for Photogrammetry (ifp), Stuttgart University, Stuttgart, Germany David Danko Esri, Vienna, VA, USA William F. Davenhall Geomedicine Analytics Section, Davenhall Associates, LLC, Mount Dora, FL, USA Peter Dietrich Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany Kim Durante Science and Engineering Libraries, Stanford University, Stanford, CA, USA Kian Fadaie Retired from Department of Fisheries and Oceans Canada, Ottawa, ON, Canada Kenneth Field Esri, Redlands, CA, USA Betsy George Spatial and Location Technologies, Oracle America, Inc., Nashua, NH, USA Frank Gielsdorf technet GmbH Berlin, Berlin, Germany Vladimir Golubev Faculty of Territory Development, Moscow State University of Geodesy and Cartography, Moscow, Russian Federation Görres Grenzdörffer Faculty for Agricultural and Environmental Sciences, Rostock University, Rostock, Germany Gerhard Gröger CPA ReDev GmbH, Siegburg, Germany Norbert Haala Institute for Photogrammetry (ifp), University of Stuttgart, Stuttgart, Germany Paul Hardy Cambridge, UK John Herring Spatial and Graph, Oracle, Nashua, NH, USA Erik Hoel Research and Development, Esri, Redlands, CA, USA Haosheng Huang Department of Geography, Ghent University, Ghent, Belgium Marco Hugentobler Sourcepole, Zürich, Switzerland Knut Jetlund Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Gjøvik, Norway; Transport and Society, Norwegian Public Roads Administration, Hamar, Norway Mathias Jonas International Hydrographic Organization, Monaco, Monaco Gerhard Joos Department of Geoinformatics, Munich University of Applied Sciences, Munich, Germany xxxii Holger Kessler Geological Modelling Systems, British Geological Survey, Nottingham, UK Christopher Kinabrew National Network of Public Health Institutes, New Orleans, LA, USA Jens Klump Mineral Resources, CSIRO, Perth, Australia Angela Lausch Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany Alan Leidner President of the NYC Geospatial Information Systems and Mapping Organization or GISMO, New York, NY, USA Steve Lime MnIT Services, State of Minnesota, St. Paul, MN, USA Roger Lott Ilkley, West Yorkshire, UK Peter Löwe IT and eScience Department, WZB Berlin Social Science Center, Berlin, Germany Wolfgang Kresse University of Applied Sciences Neubrandenburg, Neubrandenburg, Germany Joan Masó CREAF Grumets research group, CREAF. Edifici C. Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain Stephen J. Mathers Nottingham, UK Andreas Matheus Secure Dimensions GmbH, Munich, Germany William Meehan Utility Solutions, Esri, Redlands, CA, USA Helena Mitasova Dept. of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA Dietmar Müller School of Geosciences, The University of Sydney, Sydney, NSW, Australia Edward Nash DVZ Datenverarbeitungszentrum Mecklenburg-Vorpommern GmbH, Schwerin, Germany Markus Neteler mundialis GmbH & Co. KG, Bonn, Germany Bettina Neuhäuser Verkehrsauskunft Österreich VAO GmbH, Vienna, Austria C. Douglas O’Brien IDON Technologies, Inc., Ottawa, Ontario, Canada George Percivall GeoRoundtable, Crofton, MD, USA Roland Pesch Institute for Applied Photogrammetry and Geoinformatics (IAPG), Jade University of Applied Sciences, Oldenburg, Germany Clemens Portele interactive instruments GmbH, Bonn, Germany List of Contributors List of Contributors xxxiii Jack Reed Digital Library Systems and Services, Stanford University, Stanford, CA, USA Charles Roswell Columbia, MD, USA Martin Salzmann Netherland’s Cadastre, Land Registry and Mapping Agency, Apeldoorn, The Netherlands Karsten Schmidt Remote Sensing Technology Institute, German Aerospace Center (DLR), Neustrelitz, Germany Simon Schönrock Geo- and Hydromodelling, biota – Institut für ökologische Forschung und Planung GmbH, Bützow, Germany Markus Seifert Landesamt für Vermessung und Geoinformation, München, Germany Jan Skaloud Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland Christian Strobl IT Strategy, eGovernment and Applications, Bavarian State Ministry of the Environment and Consumer Protection, Munich, Germany Jérôme Théau Université de Sherbrooke, Sherbrooke, QC, Canada Sina C. Truckenbrodt Institute of Geography, Earth Observation, Friedrich Schiller University Jena, Jena, Germany Paul Wessel Dept. of Earth Sciences, University of Hawaii at Mānoa, Honolulu, HI, USA Jens Wiebensohn Premslin Farm KG, Karstädt, Germany Jessica Wyland Marketing Communication, Esri, Redlands, CA, USA