[go: up one dir, main page]

Academia.eduAcademia.edu
PHYSICAL REVIEW D 83, 112004 (2011) pffiffi Upsilon production cross section in pp collisions at s ¼ 7 TeV V. Khachatryan et al.* (CMS Collaboration) (Received 27 December 2010; published 15 June 2011) pffiffi The ð1SÞ, ð2SÞ, and ð3SÞ production cross sections in proton-proton collisions at s ¼ 7 TeV are measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3:1  0:3 pb 1 . Integrated over the rapidity range jyj < 2, we find the product of the ð1SÞ production cross section and branching fraction to dimuons to be ðpp ! ð1SÞXÞ  Bðð1SÞ ! þ  Þ ¼ 7:37  0:13þ0:61 0:42  0:81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized ð1SÞ production. With the assumption of fully transverse or fully longitudinal production polarization, the measured cross section changes by about 20%. We also report the measurement of the ð1SÞ, ð2SÞ, and ð3SÞ differential cross sections as a function of transverse momentum and rapidity. DOI: 10.1103/PhysRevD.83.112004 PACS numbers: 13.85.Ni, 14.40.Pq I. INTRODUCTION The hadroproduction of quarkonia is not understood. None of the existing theories successfully reproduces both the differential cross section and the polarization measurements of charmonium and bottomonium states [1]. It is expected that studying quarkonium hadroproduction at higher center-of-mass energies and over a wider rapidity range will facilitate significant improvements in our understanding. Measurements of the  resonances are particularly important since the theoretical calculations are more robust than for the charmonium family due to the heavy bottom quark and the absence of b-hadron feeddown. Measurements of quarkonium hadroproduction cross sections and production polarizations made at the Large Hadron Collider (LHC) will allow important tests of several alternative theoretical approaches. These include nonrelativistic QCD (NRQCD) factorization [2], where quarkonium production includes color-octet components, and calculations made in the color-singlet model including next-to-leading-order (NLO) corrections [3] which reproduce the differential cross sections measured at the Tevatron experiments [4,5] without requiring a significant color-octet contribution. This paper presents the first measurement of the ð1SÞ, ð2SÞ, and ð3SÞ production cross sections in protonpffiffi proton collisions at s ¼ 7 TeV, using data recorded by the Compact Muon Solenoid (CMS) experiment between April and September 2010. In these measurements, the signal efficiencies are determined with data. Consequently, Monte Carlo simulation is used only in the *Full author list given at the end of the article. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. 1550-7998= 2011=83(11)=112004(27) evaluation of the geometric and kinematic acceptances. The document is organized as follows. Sec. II contains a short description of the CMS detector. Sec. III presents the data collection, the trigger and offline event selections, the reconstruction of the  resonances, and the Monte Carlo simulation. Throughout this paper,  and ðnSÞ are used to denote the ð1SÞ, ð2SÞ, and ð3SÞ resonances. The detector acceptance and the efficiency to reconstruct  resonances that decay to two muons in CMS are discussed in Secs. IV and V, respectively. In Sec. VI the fitting technique employed to extract the cross section is presented. The evaluation of systematic uncertainties on the measurements is described in Sec. VII. Sec. VIII presents the ðnSÞ cross section results and comparisons to existing measurements at lower collision energies [4,5] and to the predictions of the PYTHIA [6] event generator. II. THE CMS DETECTOR The central feature of the CMS apparatus is a superconducting solenoid, of 6 m inner diameter, providing a field of 3.8 T. Inside the solenoid in order of increasing distance from the interaction point are the silicon tracker, the crystal electromagnetic calorimeter, and the brass/scintillator hadron calorimeter. Muons are detected by three types of gas-ionization detectors embedded in the steel return yoke: drift tubes (DT), cathode strip chambers (CSC), and resistive plate chambers (RPC). The muon measurement covers the pseudorapidity range jj < 2:4, where  ¼ ln½tanð=2ފ and the polar angle  is measured from the z-axis, which points along the counterclockwise beam direction. The silicon tracker consists of pixel detectors (three barrel layers and two forward disks on either side of the detector, comprising 66  106 100  150 m2 pixels) followed by microstrip detectors (ten barrel layers plus three inner disks and nine forward disks on either side of the detector, with 10  106 strips of 112004-1 Ó 2011 CERN, for the CMS Collaboration \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) pitch between 80 and 184 m). The detector systems are aligned and calibrated using LHC collision data and cosmic-ray muons [7]. Because of the strong magnetic field and the fine granularity of the silicon tracker, the muon transverse-momentum measurement, pT , based on information from the silicon tracker alone has a resolution of about 1% for a typical muon in this analysis. The silicon tracker provides the primary vertex position with 20 m accuracy. The two-level CMS trigger system selects events of interest for permanent storage. The first trigger level (L1), composed of custom hardware processors, uses information from the calorimeter and muon detectors to select events in less than 1 s. The high-level trigger (HLT) software algorithms, executed on a farm of commercial processors, further reduce the event rate using information from all detector subsystems. A more detailed description of the CMS detector can be found elsewhere [8]. III. DATA SAMPLE AND EVENT RECONSTRUCTION response of the CMS detector is simulated with a GEANT4-based [15] Monte Carlo (MC) program. Simulated events are processed with the same reconstruction algorithms as used for data. C. Offline muon reconstruction In this analysis, a muon candidate is defined as a charged track reconstructed in the silicon tracker and associated with a compatible signal in the muon detectors. Tracks are reconstructed using a Kalman filter technique which starts from hits in the pixel system and extrapolates outward to the silicon strip tracker. Further details may be found in Ref. [16]. Quality criteria are applied to tracks to reject muons from kaon and pion decays. Tracks are required to have at least 12 hits in the silicon tracker, at least one of which must be in the pixel detector, and a track-fit 2 per degree of freedom smaller than 5. In addition tracks are required to emanate from a cylinder of radius 2 mm and length 50 cm centered on the pp interaction region and parallel to the beam line. Muon candidates are required to satisfy:  p T > 3:5 GeV=c if j j < 1:6; A. Event selection The data sample used in this analysis was recorded by the CMS detector in pp collisions at a center-of-mass energy of 7 TeV. The sample corresponds to a total integrated luminosity of 3:1  0:3 pb 1 [9]. The maximum instantaneous luminosity was 1031 cm 2 s 1 , and event pileup was negligible. Data are included in the analysis if the silicon tracker, the muon detectors, and the trigger were performing well, and the luminosity measurement is available. The trigger requires the detection of two muons at the hardware level, without any further selection at the HLT. The coincidence of two muon signals without an explicit pT requirement is sufficient to allow the dimuon trigger without prescaling. All three muon systems—DT, CSC, and resistive plate chambers—take part in the trigger decision. Anomalous events arising from beam-gas interactions or beam scraping in the beam transport system near the interaction point, which produce a large number of hits in the pixel detector, are removed with offline software filters [10]. A good primary vertex is also required, as defined in Ref. [10]. B. Monte Carlo simulation Upsilon events are simulated using PYTHIA 6.412 [6], which generates events based on the leading-order colorsinglet and octet mechanisms, with nonrelativistic QCD matrix elements tuned by comparing calculations with the CDF data [11] and applying the normalization and wavefunctions as recommended in Ref. [12]. The simulation includes the generation of b states. Final-state radiation (FSR) is implemented using PHOTOS [13,14]. The p T  or > 2:5 GeV=c if 1:6 < j j < 2:4: (1) These kinematic criteria are chosen to ensure that the trigger and muon reconstruction efficiencies are high and not rapidly changing within the acceptance window of the analysis. The momentum measurement of charged tracks in the CMS detector is affected by systematic uncertainties caused by imperfect knowledge of the magnetic field, the amount of material, and subdetector misalignments, as well as by biases in the algorithms which fit the track trajectory. A mismeasurement of track momenta results in a shift and broadening of the reconstructed peaks of dimuon resonances. An improved understanding of the CMS magnetic field, detector alignment, and material budget is obtained from cosmic-ray muon and LHC collision data [7,17,18]. Residual effects are determined by studying the dependence of the reconstructed J= c dimuon invariantmass distribution on the muon kinematics [19]. The transverse momentum corrected for the residual scale distortion is parametrized as pT ¼ ð1 þ a1 þ a2 2 Þ  p0T , where p0T is the measured muon transverse momentum, a1 ¼ ð3:8  1:9Þ  10 4 , and a2 ¼ ð3:0  0:7Þ  10 4 . Coefficients for terms linear in  and quadratic in p0T and p0T   are consistent with zero and are not included. D.  event selection To identify events containing an  decay, muon candidates with opposite charges are paired, and the invariant mass of the muon pair is required to be between 8 and 14 GeV=c2 . The longitudinal separation between the two muons at their points of closest approach to the beam axis 112004-2 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) is required to be less than 2 cm. The two muon helices are fit with a common vertex constraint, and events are retained if the fit 2 probability is larger than 0.1%. The dimuon candidate is required to have passed the trigger selection. If multiple dimuon candidates are found in the same event, the candidate with the best vertex quality is retained; the fraction of signal candidates rejected by this requirement is about 0.2%. Finally, the rapidity, y, of the  candidates is required to satisfy jyj < 2 because the acceptance diminishes rapidly at larger rapidity. The rapidity is defined as Eþpk 1 2 lnðE pk Þ, y¼ where E is the energy and pk the momentum parallel to the beam axis of the muon pair. The dimuon invariant-mass spectrum in the ðnSÞ region for the dimuon transverse-momentum interval pT < 30 GeV=c is shown in Fig. 1 for the pseudorapidity intervals j j < 2:4 (top) and j j < 1:0 (bottom). The ð1SÞ mass resolution is determined from the fit function described in Sec. VI. We obtain a mass resolution of 96  2 MeV=c2 when muons from the entire pseudorapidity range are included and 69  2 MeV=c2 when both muons satisfy j j < 1. The observed resolutions are in good agreement with the predictions from MC simulation. IV. ACCEPTANCE þ The  !   acceptance of the CMS detector is defined as the product of two terms. The first is the fraction of upsilons of given pT and y where each of the two muons satisfies Eq. (1). The second is the probability that when there are only two muons in the event both can be reconstructed in the tracker without requiring the quality criteria. Both terms are evaluated by simulation and parametrized as a function of the pT and rapidity of the . The acceptance is calculated from the ratio A ðpT ; yÞ ¼ FIG. 1 (color online). The dimuon invariant-mass distribution in the vicinity of the ðnSÞ resonances for the full rapidity covered by the analysis (top) and for the subset of events where the pseudorapidity of each muon satisfies j j < 1 (bottom). The solid line shows the result of a fit to the invariant-mass distribution before accounting for acceptance and efficiency, with the dashed line denoting the background component. Details of the fit are described in Sec. VI.  ðpT ; yÞ Nrec ;  Ngen ðpT ; yÞ (2)  where Ngen ðpT ; yÞ is the number of upsilons generated in a  ðp ; yÞ is the number reconstructed in ðpT ; yÞ bin, while Nrec T the same ðpT ; yÞ region but now using the reconstructed, rather than generated, variables. In addition, the numerator requires that the two muons reconstructed in the silicon tracker satisfy Eq. (1). The acceptance is evaluated with a signal MC sample in which the  decay to two muons is generated with the EVTGEN [20] package including the effects of final-state radiation. There are no particles in the event besides the , its daughter muons, and final-state radiation. The upsilons are generated uniformly in pT and rapidity. This sample is then fully simulated and reconstructed with the CMS detector simulation software to assess the effects of multiple scattering and finite resolution of the detector. Systematic uncertainties arising from the dependence of the measurement of the cross section on the MC description of the pT spectrum and resolution are evaluated in Sec. VII. The acceptance is calculated for two-dimensional (2-D) bins of size ð1 GeV=c; 0:1Þ in the reconstructed ðpT ; yÞ of the , and it is used in candidate-by-candidate yield corrections. The 2-D acceptance map for unpolarized ð1SÞ is shown in the top plot of Fig. 2. The acceptance varies with dimuon mass. This is shown in the bottom plot of Fig. 2, which displays the acceptance integrated over the rapidity range as a function of pT for each upsilon resonance. The transverse-momentum threshold for muon detection, especially in the forward region, is small compared 112004-3 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) 1 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 0.8 0.4 0.6 0.3 0.4 0.2 0.2 0.1 bisection of the incoming proton directions in the  rest frame. V. EFFICIENCY A |y Υ (1S) | 1.8 Υ (1S) 2 0 0 10 20 Υ (1S) p T 0.8 30 0 0.75 0.7 0.65 AΥ 0.6 0.55 |yΥ |<2 Υ (3S) Υ (2S) Υ (1S) 0.45 0.4 0.35 0.3 0 5 10 15 20 25 "ðtotalÞ ¼ "ðtrigjidÞ  "ðidjtrackÞ  "ðtrackjacceptedÞ  "trig  "id  "track : (GeV/c) 0.5 We factor the total muon efficiency into three conditional terms, 30 pΥT (GeV/c) FIG. 2. (Top) Unpolarized ð1SÞ acceptance as a function of pT and y; (bottom) the unpolarized ð1SÞ, ð2SÞ, and ð3SÞ acceptances integrated over rapidity as a function of pT . to the upsilon mass. Therefore, when the  decays at rest, both muons are likely to reach the muon detector. When the  has a modest boost, the probability is greater that one muon will be below the muon detection threshold and the acceptance decreases until the  transverse momentum reaches about 5 GeV=c, after which the acceptance rises slowly. The production polarization of the  strongly influences the muon angular distributions and is expected to change as a function of pT . In order to account for this, the acceptance is calculated for five extreme polarization scenarios [21]: unpolarized and polarized longitudinally and transversely with respect to a polarization axis defined in two different reference frames. The first is the helicity frame (HX), where the polarization axis is given by the flight direction of the  in the center-of-mass system of the colliding beams. The second is the Collins-Soper (CS) frame [22], where the polarization axis is given as the (3) The tracking efficiency, "track , combines the efficiency that the accepted track of a muon from the ðnSÞ decay is reconstructed in the presence of additional particles in the silicon tracker, as determined with a track-embedding technique [23], and the efficiency for the track to satisfy quality criteria. The muon identification efficiency, "id , is the probability that the track in the silicon tracker is identified as a muon. The efficiency that an identified muon satisfies the trigger is denoted by "trig . The tag-and-probe (T&P) technique [23] is a data-based method used in this analysis to determine the track quality, muon identification, and muon trigger efficiencies. It utilizes dimuons from J= c decays to provide a sample of probe objects. A well-identified muon, the tag, is combined with a second object in the event, the probe, and the invariant mass is computed. The tag-probe pairs are divided into two samples, depending on whether the probe satisfies or not the criteria for the efficiency being evaluated. The two tag-probe mass distributions contain a J= c peak. The integral of the peak is the number of probes that satisfy or fail to satisfy the imposed criteria. The efficiency parameter is extracted from a simultaneous unbinned maximum-likelihood fit to both mass distributions. The J= c resonance is utilized for T&P efficiency measurements as it provides a large-yield and statisticallyindependent dimuon sample [24]. To avoid trigger bias, events containing a tag-probe pair have been collected with triggers that do not impose requirements on the probe from the detector subsystem related to the efficiency measurement. For the track-quality efficiency measurement, the trigger requires two muons at L1 in the muon system without using the silicon tracker. For the muon identification and trigger efficiencies, the trigger requires a muon at the HLT, that is matched to the tag, paired with a silicon track of opposite sign and the invariant mass of the pair is required to be in the vicinity of the J= c mass. The component of the tracking efficiency measured with the track-embedding technique is well described by a constant value of ð99:64  0:05Þ%. The efficiency of the track-quality criteria measured by the T&P method is likewise nearly uniform and has an average value of ð98:66  0:05Þ%. Tracks satisfying the quality criteria are the probes for the muon identification study. The resulting single-muon identification efficiencies as a  function of p T for six j j regions are shown in Fig. 3 112004-4 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011)  FIG. 3 (color online). Single-muon identification efficiencies as a function of p T for six j j regions, measured from data using J= c T&P (closed circles). The efficiencies determined with  MC truth (triangles), J= c MC truth (open circles), and J= c MC T&P (squares), used in the evaluation of systematic uncertainties, are also shown. and Table I. The probes that satisfy the muon identification criteria are in turn the probes for the study of the trigger efficiency. The resulting trigger efficiencies for the same  p T and j j regions are shown in Fig. 4 and Table II. Figs. 3 and 4 also show single-muon identification and trigger efficiencies, respectively, determined from a highstatistics MC simulation. The single-muon efficiencies determined with the T&P technique in the data are found to be consistent, over most of the kinematic range of interest, with the efficiencies obtained from the  MC simulation utilizing the generator-level particle information (‘‘MC truth’’). Two exceptions are the single-muon trigger efficiency for the intervals j j < 0:4 and 0:8 < j j < 1:2, where the efficiency is lower in data than in the MC simulation. Both correspond to cases where the MC simulation is known to not fully reproduce the detector properties or performance: gaps in the DT coverage (j j < 0:4) and suboptimal timing synchronization TABLE I. Single-muon identification efficiencies, in percent, measured from J= c data with T&P. The statistical uncertainties in the least significant digits are given in parentheses; uncertainties less than 0.05 are denoted by 0. For asymmetric uncertainties the positive uncertainty is reported first. p T (GeV=c) 2.5–3.0 3.0–3.5 3.5–4.0 4.0–4.5 4.5–5.0 5.0–6.0 6.0–8.0 8.0–50.0 0.0–0.4 83(2) 92(2) 99(1, 2) 98(2) 100(0, 2) 100(0, 2) 0.4–0.8 89(2) 95(2) 99(1, 3) 100(0, 1) 100(0, 1) 97(3) 0.8–1.2 88(2) 99(1, 3) 95(3) 100(0, 2) 100(0, 1) 100(0, 3) 112004-5 j j 1.2–1.6 1.6–2.0 2.0–2.4 96(3) 98(2, 3) 96(3) 100(0, 1) 100(0, 2) 97(3, 4) 100(0, 4) 95(3) 100(0, 2) 100(0, 2) 100(0, 2) 97(3) 100(0, 2) 100(0, 3) 94(6) 100(0, 4) 100(0, 4) 100(0, 6) 100(0, 4) 100(0, 5) 94(6, 7) 98(2, 9) \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011)  FIG. 4 (color online). Single-muon trigger efficiencies as a function of p T for six j j regions, measured from data using J= c T&P (closed circles). The efficiencies determined with  MC truth (triangles), J= c MC truth (open circles), and J= c MC T&P (squares), used in the evaluation of systematic uncertainties, are also shown. between the overlapping CSC and DT subsystems (0:8 < j j < 1:2). For all cases the data-determined efficiencies are used to obtain the central results. The  efficiency is estimated from the product of singlemuon efficiencies. Differences between the single and dimuon efficiencies determined from MC truth and those measured with the T&P technique can arise from the kinematic distributions of the probes and from bin averaging. TABLE II. Single-muon trigger efficiencies, in percent, measured from J= c data with T&P. The statistical uncertainties in the least significant digits are given in parentheses; uncertainties less than 0.05 are denoted by 0. For asymmetric uncertainties the positive uncertainty is reported first. j j p T (GeV=c) 0.0–0.4 0.4–0.8 0.8–1.2 1.2–1.6 1.6–2.0 2.0–2.4 2.5–3.0 3.0–3.5 3.5–4.0 4.0–4.5 4.5–5.0 5.0–6.0 6.0–8.0 8.0–50.0 69(1) 79(1) 85(1) 90(1) 92(1) 92(1) 81(1) 91(1) 95(1) 97(1) 97(1) 97(1) 78(1) 86(1) 87(1) 85(1) 85(1) 86(1) 98(1) 98(1) 97(1) 99(0, 1) 100(0) 99(1) 93(1) 94(1) 94(1) 92(1) 96(1) 95(1) 97(1) 97(1) 92(2) 93(1) 97(1) 96(1) 99(1) 96(1) 99(1) 99(2) This is evaluated by comparing the single-muon and dimuon efficiencies as determined using the T&P method in J= c ! þ  MC events to the efficiencies obtained in the same events utilizing generator-level particle information. In addition, effects arising from differences in the kinematic distributions between the  and J= c decay muons are investigated by comparing the efficiencies determined from  ! þ  MC events to those from J= c ! þ  MC events. In all cases the differences in the efficiency values are not significant, and are used only as an estimate of the associated systematic uncertainties. The efficiency of the vertex 2 probability cut is determined using the high-statistics J= c data sample, to which the  selection criteria are applied. The efficiency is extracted from a simultaneous fit to the dimuon mass distribution of the passing and failing candidates. It is found to be ð99:2  0:1Þ%. A possible difference between the efficiency of the vertex 2 probability cut for the J= c and  is evaluated by applying the same technique to large MC signal samples of each resonance. No significant difference in the efficiencies is found. The efficiency of the remaining selection criteria listed in Sec. III is studied in data and MC simulation and is found to be consistent with unity. 112004-6 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) VI. MEASUREMENT OF THE CROSS SECTIONS The ðnSÞ differential cross section is determined from the acceptance and efficiency-corrected signal yield, corrected NðnSÞ , using the equation d2 ðpp ! ðnSÞXÞ  BððnSÞ ! þ  Þ dpT dy ¼ corrected NðnSÞ ðA; "Þ L  pT  y ; (4) where L is the integrated luminosity of the dataset and pT and y are the bin widths. The ð1SÞ, ð2SÞ, and ð3SÞ yields are extracted via an extended unbinned maximum-likelihood fit to the dimuon invariant-mass spectrum. The measured mass-lineshape of each  state is parametrized by a ‘‘crystal ball’’ (CB) function [25]; this is a Gaussian resolution function with the low side tail replaced with a power law describing FSR. The resolution, given by the Gaussian standard deviation, is a free parameter in the fit but is constrained to scale with the ratios of the resonance masses. The FSR tail is fixed to the MC shape. Since the three resonances overlap in the measured dimuon mass, we fit the three ðnSÞ states simultaneously. Therefore, the probability distribution function (PDF) describing the signal consists of three CB FIG. 5 (color online). Fit to the dimuon invariant-mass distribution in the specified pT regions for jyj < 2, before accounting for acceptance and efficiency. The solid line shows the result of the fit described in the text, with the dashed line representing the background component. 112004-7 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) functions. The mass of the ð1SÞ is a free parameter in the fit, to accommodate a possible bias in the momentum scale calibration. The number of free parameters is reduced by fixing the ð2SÞ and ð3SÞ mass differences, relative to the ð1SÞ, to their world average values [26]; an additional mass-scale parameter multiplying the mass differences is found to be consistent with unity. A second-order polynomial is chosen to describe the background in the 8–14 GeV=c2 mass-fit range. The fit to the dimuon invariant-mass spectrum, before accounting for acceptance and efficiencies, is shown in Fig. 1 for the  transverse-momentum interval TABLE III. The uncorrected  signal yield, fit quality (normalized 2 , obtained by comparing the fit PDF and the binned data; the number of degrees of freedom is 112), and average weight hwi in pT intervals for jyj < 2. The mean of the pT distribution in each interval is also given. pT range (GeV=c) mean fit 2 signal yield ð1SÞ 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–12 12–14 14–17 17–20 20–30 sum combined fit 0.7 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.9 12.9 15.4 18.3 23.3 1.1 1.7 1.1 1.3 1.0 1.1 1.2 1.3 1.1 1.1 1.1 1.3 1.2 0.8 0.8 ð2SÞ 0–2 2–4 4–6 6–9 9–12 12–16 16–20 20–30 sum combined fit 1.3 2.9 4.9 7.3 10.3 13.6 17.7 22.5 1.7 1.3 0.9 1.1 1.1 1.3 1.0 0.8 427  34 1153  54 1154  53 806  46 769  43 716  40 578  37 477  33 344  26 286  24 449  27 246  19 208  18 105  13 109  13 7825  133 7807  133 ð3SÞ 0–3 3–6 6–9 9–14 14–20 20–30 sum combined fit 1.8 4.3 7.3 11.0 16.3 23.4 1.5 1.0 1.1 1.2 1.2 0.8 368  41 591  50 416  40 424  38 257  25 121  16 63  11 39  9 2279  91 2270  91 397  51 326  47 264  36 207  25 83  14 49  10 1324  84 1318  84 hwi pT < 30 GeV=c, and for the 15 pT intervals used for the ð1SÞ differential cross-section measurement in Fig. 5. The observed ðnSÞ signal yields are reported in Table III. The width of the pT intervals chosen for each resonance reflects the corresponding available signal statistics. In all cases the quoted uncertainty is statistical. As shown in Table III, for each resonance the sum of the yields in each pT interval is consistent with the yield determined from a fit to the entire pT range. Given the significant  and pT dependencies of the efficiencies and acceptances of the muons from ðnSÞ decays, we correct for them on a candidate-by-candidate basis before performing the mass corrected fit to obtain NðnSÞ in Eq. (4). Specifically: an  candi date reconstructed with pT and y from muons with pT 1;2 and 1;2 is corrected with a weight 1 0.44 0.41 0.36 0.30 0.28 0.28 0.28 0.30 0.34 0.37 0.41 0.45 0.50 0.54 0.60 0.47 0.40 0.32 0.33 0.41 0.46 0.55 0.60 0.47 0.37 0.35 0.43 0.52 0.61 FIG. 6 (color online). (Top) Fit to the dimuon invariant-mass distribution in the range 2 < pT < 5 GeV=c for jyj < 1. (bottom) Fit to the ð1SÞ-acceptance and efficiency weighted dimuon distribution in the range 2 < pT < 5 GeV=c for jyj < 1. 112004-8 UPSILON PRODUCTION CROSS SECTION IN pp . . . w  wacc  wtrack  wid  wtrig  wmisc ; PHYSICAL REVIEW D 83, 112004 (2011) (5) where the factors are: (i) acceptance, wacc ¼ 1 1 1=A ðpT ; yÞ; (ii) tracking, wtrack ¼ 1=½"track ðp T ; Þ  2 2 "track ðpT ;  ފ; (iii) identification, wid ¼ 2 1 2 1 1=½"id ðp T ;  Þ  "id ðpT ;  ފ; (iv) trigger, wtrig ¼ 2 1 2 1 1=½"trig ðp T ;  Þ  "trig ðpT ;  ފ; and (v) additional selection criteria, wmisc , including the efficiency of the vertex selection criteria. The acceptance depends on the resonance mass; the ð3SÞ gives rise to higher-momenta muons which results in a roughly 10% larger acceptance for the ð3SÞ than for the ð1SÞ. Consequently, the corrected yield for each of the ðnSÞ resonances is obtained from a fit in which the corresponding ðnSÞ acceptance is employed. Figure 6 shows the fit to an example mass distribution before (top plot) and after (bottom plot) event weighting. As can be seen, the weighting procedure scales the mass distribution without introducing large distortions to the lineshape of either the signal or background distributions. We determine the ðnSÞ differential cross section separately for each polarization scenario. The results are summarized in Table IV. We also divide the data into two ranges of rapidity, jyj < 1 and 1 < jyj < 2, and repeat the TABLE IV. The product of the ðnSÞ production cross sections, , and the dimuon branching fraction, B, measured in pT bins for jyj < 2, with the assumption of unpolarized production. The statistical uncertainty (stat.), the sum of the systematic uncertainties in P quadrature ðsyst: Þ, and the total uncertainty (; including stat., syst: , and luminosity terms) are quoted as relative uncertainties in percent. Values in parentheses denote the negative part of the asymmetric uncertainty. The fractional change in percent of the cross section is shown for four polarization scenarios: fully-longitudinal (L) and fully-transverse (T) in the helicity (HX) and Collins-Soper (CS) frames. P   B (nb) stat. (%)  (%) HX-T (%) HX-L (%) CS-T (%) CS-L (%) pT (GeV=c) syst: (%) ð1SÞ jyj < 2 0–30 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–12 12–14 14–17 17–20 20–30 7.37 0.30 0.90 1.04 0.88 0.90 0.82 0.64 0.51 0.33 0.25 0.36 0.18 0.14 0.06 0.06 0–30 0–2 2–4 4–6 6–9 9–12 12–16 16–20 20–30 1.90 0.25 0.48 0.41 0.41 0.21 0.09 0.04 0.02 0–30 0–3 3–6 6–9 9–14 14–20 20–30 1.02 0.26 0.29 0.24 0.16 0.05 0.03 1.8 8 5 5 6 6 6 7 7 8 8 6 8 9 12 12 ð2SÞ 4.2 12 8 10 9 10 13 18 23 ð3SÞ 6.7 14 14 14 12 17 20 8(6) 10(7) 9(6) 8(6) 9(7) 8(6) 8(6) 8(5) 8(6) 8(6) 9(6) 8(5) 9(5) 10(6) 10(6) 10(6) 14(13) 17(15) 15(14) 14(13) 15(14) 15(14) 15(14) 15(14) 15(14) 16(14) 16(15) 15(14) 16(14) 17(15) 19(17) 19(17) þ16 þ16 þ16 þ15 þ18 þ18 þ17 þ17 þ16 þ16 þ15 þ15 þ15 þ14 þ13 þ12 22 22 20 20 23 23 23 22 22 22 21 21 20 19 18 17 9(6) 11(9) 12(10) 10(8) 10(7) 9(6) 10(7) 11(8) 20(18) 15(13) 20(19) 18(17) 18(17) 17(16) 17(16) 20(19) 24(23) 32(32) þ14 þ14 þ12 þ16 þ15 þ14 þ14 þ12 þ12 19 19 17 22 21 20 19 18 17 11(8) 10(8) 18(17) 11(8) 10(8) 11(8) 12(9) 17(15) 21(19) 26(25) 21(19) 19(18) 23(22) 26(25) þ14 þ13 þ13 þ15 þ15 þ13 þ11 19 18 18 20 20 18 16 112004-9 jyj < 2 jyj < 2 þ13 þ17 þ19 þ19 þ18 þ16 þ13 þ11 þ7 þ4 þ2 1 3 4 4 4 16 23 24 24 23 21 19 16 10 5 1 þ3 þ7 þ9 þ10 þ10 þ12 þ17 þ18 þ15 þ9 þ1 2 4 5 15 22 23 20 13 0 þ6 þ9 þ11 þ10 þ16 þ16 þ10 1 4 4 13 22 21 13 þ2 þ9 þ9 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) TABLE V. The product of the ðnSÞ production cross sections, , and the dimuon branching fraction, B, measured in pT bins for jyj < 1 and 1 < jyj < 2, with the assumption of unpolarized production. The statistical uncertainty (stat.), the sum of the systematic P uncertainties in quadrature ðsyst: Þ, and the total uncertainty (; including stat., syst: , and luminosity terms) are quoted as relative uncertainties in percent. Values in parentheses denote the negative part of the asymmetric uncertainty. The fractional change in percent of the cross section is shown for four polarization scenarios: fully-longitudinal (L) and fully-transverse (T) in the helicity (HX) and Collins-Soper (CS) frames. P   B (nb) stat. (%)  (%) HX-T (%) HX-L (%) CS-T (%) CS-L (%) pT (GeV=c) syst: (%) ð1SÞ jyj < 1 0–30 0–2 2–5 5–8 8–11 11–15 15–30 4.03 0.70 1.54 1.02 0.44 0.23 0.11 0–30 0–3 3–7 7–11 11–15 15–30 1.03 0.29 0.41 0.22 0.06 0.04 0–30 0–7 7–12 12–30 0.59 0.38 0.15 0.07 0–30 0–2 2–5 5–8 8–11 11–15 15–30 3.55 0.55 1.39 0.97 0.37 0.18 0.10 0–30 0–3 3–7 7–11 11–15 15–30 0.93 0.21 0.44 0.19 0.06 0.03 0–30 0–7 7–12 12–30 0.40 0.24 0.10 0.06 1.3 5 4 5 6 7 9 ð2SÞ 2.9 10 10 11 16 17 ð3SÞ 4.8 11 15 14 ð1SÞ 1.2 7 4 5 7 8 17(15) ð2SÞ 3.0 15 9 12 17 21 ð3SÞ 4.9 18 22 17 8(6) 9(7) 10(9) 7(6) 7(5) 8(5) 8(6) 14(12) 15(14) 15(15) 14(13) 15(14) 15(14) 16(15) þ16 þ14 þ14 þ18 þ18 þ18 þ15 22 19 20 23 23 23 20 9(6) 17(16) 16(15) 9(7) 9(6) 9(7) 15(13) 22(21) 21(21) 18(17) 21(20) 22(21) þ14 þ10 þ13 þ17 þ17 þ14 19 14 18 22 22 20 11(8) 25(24) 10(8) 10(8) 16(15) 30(29) 21(20) 20(20) þ14 þ11 þ16 þ15 8(6) 11(9) 9(7) 9(5) 10(6) 10(6) 11(6) 14(12) 17(16) 15(14) 15(13) 16(14) 17(15) 18(16) þ16 þ18 þ20 þ16 þ13 þ11 þ10 9(6) 24(23) 12(8) 11(8) 11(7) 13(9) 15(13) 30(29) 18(17) 20(18) 23(21) 27(26) þ14 þ17 þ17 þ13 þ11 þ10 11(8) 29(27) 13(10) 11(8) 16(15) 36(35) 28(27) 23(22) þ14 þ16 þ13 þ10 fits to obtain the ðnSÞ differential cross sections reported in Table V. The integrated cross section for each resonance is obtained from the corresponding sum of the differential cross sections. The results for the ð1SÞ pT -integrated, rapidity-differential cross section are shown in Table VI. jyj < 1 þ13 þ18 þ18 þ8 1 4 5 16 24 23 12 þ2 þ10 þ12 þ12 þ17 þ14 þ1 4 5 15 22 19 2 þ8 þ11 jyj < 1 19 þ10 16 þ14 22 þ1 21 4 1 < jyj < 2 22 þ13 24 þ18 25 þ18 22 þ14 19 þ6 17 0 16 3 1 < jyj < 2 19 þ12 23 þ17 22 þ17 18 þ9 17 þ1 16 3 1 < jyj < 2 19 þ10 22 þ17 18 þ10 15 2 13 19 1 þ10 16 23 23 18 8 þ1 þ6 15 23 22 12 0 þ7 13 22 13 þ5 VII. SYSTEMATIC UNCERTAINTIES Systematic uncertainties are described in this section, together with the methods used in their determination. We give a representative value for each uncertainty in parentheses. 112004-10 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) TABLE VI. The product of the ð1SÞ production cross section, , and the dimuon branching fraction, B, measured in rapidity bins and integrated over the pT range p T < 30 GeV=c, with the assumption of unpolarized production. The statistical P uncertainty (stat.), the sum of the systematic uncertainties in quadrature ðsyst: Þ, and the total uncertainty (; including stat., syst: , and luminosity terms) are quoted as relative uncertainties in percent. Values in parentheses denote the negative part of the asymmetric uncertainty. The fractional change in percent of the cross section is shown for four polarization scenarios: fully-longitudinal (L) and fully-transverse (T) in the helicity (HX) and Collins-Soper (CS) frames. P  (%) HX-T (%) HX-L (%) CS-T (%) CS-L (%) jyj   B (nb) stat. (%) syst: (%) ð1SÞ pT < 30 GeV=c 0.0–2.0 0.0–0.4 0.4–0.8 0.8–1.2 1.2–1.6 1.6–2.0 7.61 1.62 1.52 1.77 1.47 1.23 1.8 3 4 4 4 4 8(6) 8(6) 9(8) 9(7) 9(7) 11(7) þ16 þ15 þ17 þ16 þ17 þ18 14(13) 14(13) 15(14) 14(13) 15(13) 16(14) We determine the cross section using acceptance maps corresponding to five different polarization scenarios, expected to represent extreme cases. The values of the cross section obtained vary by about 20%. The variations depend on pT thus affecting the shapes of the pT spectrum. The statistical uncertainties on the acceptance and efficiencies—single-muon trigger and muon ID, quality criteria, tracking and vertex quality—give rise to systematic uncertainties for the cross-section measurement. We vary the dimuon event weights in the fit coherently by 1ðstat:Þ. The muon identification and trigger efficiencies are varied coherently when estimating the associated systematic uncertainties (8%). The selection criteria requiring the muons to be consistent with emanating from the same primary vertex are fully efficient. This has been confirmed in data and simulation. The selection of one candidate per event using the largest vertex probability also has an efficiency consistent with unity. We assign an uncertainty (0.2%) from the frequency of occurrence of signal candidates in the data that are rejected by the largest vertex probability requirement but pass all the remaining selection criteria. The muon charge misassignment is estimated to be less than 0.01% [27] and contributes a negligible uncertainty. Final-state radiation is incorporated into the simulation using the PHOTOS algorithm. To estimate the systematic uncertainty associated with this procedure, the acceptance is calculated without FSR and 20% of the difference is taken as the uncertainty based on a study in Ref. [14] (0.8%). The definition of acceptance used in this analysis requires that the muons from the  decay produce reconstructible tracks. The kinematic selection is applied to the reconstructed pT and  values of these tracks. Uncertainties on the measurement of track parameters also affect the acceptance as a systematic uncertainty. The dominant uncertainty is associated with the 22 19 22 22 23 23 þ13 þ13 þ11 þ9 þ12 þ20 16 17 15 12 16 24 measurement of the track transverse momentum. The acceptance is sensitive to biases in track momentum and to differences in resolution between the simulated and measured distributions. The magnitude of these effects is quantified by comparing measurements of resonance mass and width between simulation and data [19]. To determine the effect on the  acceptance, we introduce a track pT bias of 0.2%, chosen to be 4 times the maximum momentum scale residual bias after calibration (0.3%). We also vary the transverse-momentum resolution by 10%, corresponding to the uncertainty in the resolution measurement using J= c , and recalculate the acceptance map (0.1%). Imperfect knowledge pffiffi of the production pT spectrum of the  resonances at s ¼ 7 TeV contributes a systematic uncertainty. The  MC sample used for the acceptance calculation, Eq. (2), was generated flat in pT , whereas the pT spectrum in the data peaks at a few GeV=c, and behaves as a power law above 5 GeV=c. To study the effect of this difference, we have reweighted the sample in pT to more closely describe the expected distribution in data based on a fit to the spectrum obtained from PYTHIA (1%). The distribution of the z position of the pp interaction point influences the acceptance. We have produced MC samples of ðnSÞ at different positions along the beam line, between 10 and þ10 cm with respect to the center of the nominal collision region (1%). High-statistics MC simulations are performed to compare T&P single-muon and dimuon efficiencies to the actual MC values for both the  and J= c , see Figs. 3 and 4. The differences and their associated uncertainties are taken as a source of systematic uncertainty. The contributions are: possible bias in the T&P technique (0.1%), differences in the J= c and  kinematics (1%), and the possible misestimation of the double-muon  efficiency as the product of the single-muon efficiencies (1.6%). Monte Carlo trials of the fitter demonstrate that it is consistent with providing an unbiased estimate of the yield 112004-11 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) of each resonance, its mass, and the mass resolution (1%). A systematic variation may arise from differences between the dimuon invariant-mass distribution in the data and in the PDFs chosen for the signal and background components in the fit. We consider the following variations in the signal PDF. As the CB parameters which describe the radiative tail of each resonance are fixed from MC simulation in the nominal fit to the data, we vary the CB parameters by 3 times their uncertainties (3%). We also remove the resonance mass difference constraint in the pT integrated fit (0.6%). We vary the background PDF by replacing the polynomial by a linear function, while restricting the fit to the mass range 8–12 GeV=c2 (3% when fitting the full pT and y ranges, varying with differential interval). The determination of the integrated luminosity normalization is made with an uncertainty of 11% [9]. The relative systematic uncertainties from each source are summarized TABLE VII. Relative values of the systematic uncertainties on the ðnSÞ production cross sections times the dimuon branching fraction, in pT intervals for jyj < 2, assuming unpolarized production, in percent. The abbreviations used indicate the various systematic uncertainty sources: the statistical uncertainty in the estimation of the acceptance (A) and the trigger and muon identification efficiencies ("trig;id ); imperfect knowledge of the momentum scale (Sp ), the production pT spectrum (ApT ), the efficiency of the vertex-quality criterion (Avtx ), and the modeling of FSR (AFSR ); the use of the T&P method (T&P); the bias from using the J= c to determine single-muon efficiencies rather than the  ("J= c ; ); the background PDF (BG); the signal PDF, the fitter, the tracking efficiency, and effects arising from the efficiency binning (add). Values in parentheses denote the negative part of the asymmetric uncertainty. The luminosity uncertainty of 11% is not included in the table. pT (GeV=c) A ð1SÞ "trig;id jyj < 2 Sp ApT Avtx 0–30 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–12 12–14 14–17 17–20 20–30 0.5(0.5) 0.4(0.4) 0.4(0.4) 0.5(0.5) 0.6(0.6) 0.6(0.6) 0.6(0.6) 0.6(0.6) 0.6(0.6) 0.6(0.6) 0.5(0.5) 0.5(0.5) 0.5(0.4) 0.4(0.4) 0.4(0.4) 0.3(0.3) ð2SÞ 0.6(0.6) 0.5(0.5) 0.7(0.7) 0.8(0.7) 0.7(0.7) 0.5(0.5) 0.4(0.5) 0.3(0.4) 0.3(0.3) ð3SÞ 0.7(0.6) 0.5(0.5) 0.9(0.8) 0.7(0.7) 0.5(0.5) 0.4(0.4) 0.3(0.3) 7.5(4.6) 8.3(5.4) 7.8(5.2) 7.3(4.7) 7.3(4.8) 7.4(4.5) 7.4(4.3) 7.4(4.1) 7.7(4.7) 7.4(4.2) 7.8(4.3) 7.4(3.7) 7.9(4.0) 8.5(4.2) 8.9(4.4) 8.9(4.3) 0.3(0.3) 0.1(0.1) 0.2(0.2) 0.6(0.6) 0.6(0.6) 0.4(0.3) 0.2(0.3) 0.2(0.3) 0.1(0.1) 0.0(0.1) 0.1(0.0) 0.1(0.1) 0.2(0.1) 0.1(0.1) 0.1(0.1) 0.1(0.1) 0.6 0.2 0.6 0.3 0.1 0.3 0.5 0.7 1.0 1.2 1.3 1.4 1.6 1.6 1.8 1.6 0.7 1.1 0.6 0.3 0.4 0.7 1.0 1.1 0.7 0.7 0.9 0.8 0.9 0.9 0.8 0.7 8.3(4.9) 8.3(5.2) 8.3(5.4) 7.9(4.7) 8.6(4.8) 8.4(4.2) 8.8(4.6) 8.3(4.1) 9.1(4.4) 0.3(0.3) 0.2(0.2) 0.7(0.8) 0.4(0.4) 0.1(0.1) 0.1(0.1) 0.1(0.1) 0.2(0.1) 0.1(0.1) 0.7 0.5 0.2 0.4 1.0 1.5 1.6 1.7 1.7 0.8 0.6 0.3 1.1 1.2 1.0 0.9 1.0 0.8 8.6(4.7) 8.5(4.4) 9.1(5.4) 8.9(4.8) 7.5(4.1) 8.8(4.5) 8.8(4.1) 0.3(0.3) 0.4(0.5) 0.7(0.7) 0.2(0.2) 0.1(0.1) 0.2(0.1) 0.1(0.1) 0.8 0.5 0.3 1.1 1.5 1.7 1.6 0.8 0.4 0.9 1.0 0.8 0.8 0.8 0–30 0–2 2–4 4–6 6–9 9–12 12–16 16–20 20–30 0–30 0–3 3–6 6–9 9–14 14–20 20–30 112004-12 AFSR T&P "J= c ; uncertainties are in percent 0.7 0.8 0.7 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 jyj < 2 0.8 0.8 1.0 0.8 0.7 0.5 0.5 0.5 0.5 jyj < 2 0.8 0.9 1.0 0.7 0.5 0.5 0.5 BG add. 0.0 0.5 0.2 0.1 0.0 0.0 0.0 0.1 0.2 0.0 0.2 0.2 0.1 0.3 0.5 0.3 0.9 0.8 1.1 1.1 1.1 0.9 0.7 0.7 0.8 0.7 0.6 0.6 0.6 0.6 0.7 0.6 0.5 3.4 1.8 1.5 3.7 2.3 0.5 0.4 1.0 1.0 1.9 0.2 0.3 2.2 0.1 0.1 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.1 3.0 3.1 3.0 3.1 3.1 3.6 3.5 0.0 0.4 0.1 0.0 0.2 0.2 0.3 0.4 0.2 1.0 0.6 1.5 0.9 0.9 0.8 0.8 0.5 0.3 1.9 6.8 8.0 5.2 1.7 0.9 2.0 0.0 0.0 3.2 3.3 3.3 3.3 3.5 3.6 4.0 6.5 17.3 0.1 0.2 0.0 0.0 0.3 0.3 0.5 1.0 0.6 1.7 1.0 0.7 0.6 0.5 3.4 1.7 14.1 2.2 0.4 3.4 0.3 5.4 5.7 7.3 5.6 6.1 5.9 8.3 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) TABLE VIII. Relative values of the systematic uncertainties on the ðnSÞ production cross sections times the dimuon branching fraction, in pT intervals for jyj < 1 and 1 < jyj < 2, assuming unpolarized production, in percent. The abbreviations used indicate the various systematic uncertainty sources: the statistical uncertainty in the estimation of the acceptance (A) and the trigger and muon identification efficiencies ("trig;id ); imperfect knowledge of the momentum scale (Sp ), the production pT spectrum (ApT ), the efficiency of the vertex-quality criterion (Avtx ), and the modeling of FSR (AFSR ); the use of the T&P method (T&P); the bias from using the J= c to determine single-muon efficiencies rather than the  ("J= c ; ); the background PDF (BG); the signal PDF, the fitter, the tracking efficiency, and effects arising from the efficiency binning (add). Values in parentheses denote the negative part of the asymmetric uncertainty. The luminosity uncertainty of 11% is not included in the table. pT (GeV=c) A ð1SÞ "trig;id jyj < 1 Sp ApT Avtx AFSR T&P "J= c ; uncertainties are in percent BG add. 0–30 0–2 2–5 5–8 8–11 11–15 15–30 0.5(0.5) 0.4(0.4) 0.6(0.6) 0.7(0.7) 0.5(0.5) 0.5(0.4) 0.3(0.4) ð2SÞ 0.6(0.6) 0.6(0.5) 0.8(0.8) 0.6(0.6) 0.5(0.5) 0.3(0.4) ð3SÞ 0.7(0.6) 0.8(0.8) 0.6(0.6) 0.4(0.4) ð1SÞ 0.5(0.5) 0.4(0.4) 0.5(0.5) 0.6(0.6) 0.6(0.5) 0.4(0.5) 0.4(0.5) ð2SÞ 0.6(0.6) 0.5(0.5) 0.7(0.7) 0.6(0.6) 0.5(0.5) 0.4(0.4) ð3SÞ 0.7(0.6) 0.7(0.6) 0.7(0.6) 0.4(0.4) 7.5(4.6) 7.7(5.6) 7.1(5.2) 6.5(4.4) 6.4(3.9) 6.6(3.8) 7.1(4.2) 0.3(0.3) 0.3(0.3) 0.7(0.7) 0.3(0.3) 0.0(0.0) 0.1(0.1) 0.1(0.2) 0.6 0.6 0.2 0.8 1.3 1.5 1.6 0.7 0.5 0.1 0.8 0.5 0.7 0.6 8.3(4.9) 8.2(6.0) 7.7(5.2) 7.7(4.9) 7.3(4.4) 7.4(4.3) 0.3(0.3) 0.6(0.6) 0.6(0.7) 0.1(0.0) 0.1(0.1) 0.1(0.2) 0.7 0.5 0.4 1.3 1.6 1.7 0.8 0.1 0.6 0.8 0.8 0.5 8.6(4.7) 8.8(5.9) 7.6(5.0) 7.1(4.0) 0.3(0.3) 0.6(0.7) 0.0(0.0) 0.2(0.1) 0.8 0.5 1.4 1.6 0.8 0.5 0.6 0.7 7.5(4.6) 8.2(4.6) 7.7(4.0) 8.4(4.2) 8.9(4.4) 9.1(4.2) 10.6(4.3) 0.3(0.3) 0.0(0.1) 0.3(0.3) 0.1(0.2) 0.0(0.1) 0.1(0.2) 0.2(0.3) 0.6 0.3 0.2 0.7 1.3 1.6 1.7 0.7 1.1 0.9 1.2 1.1 0.9 1.1 8.3(4.9) 7.8(3.8) 9.4(4.9) 9.6(4.8) 9.7(4.8) 9.5(3.8) 0.3(0.3) 0.2(0.2) 0.3(0.3) 0.0(0.0) 0.1(0.2) 0.2(0.2) 0.7 0.3 0.4 1.2 1.6 1.7 0.8 1.2 1.3 1.1 0.9 1.3 8.6(4.7) 8.6(2.9) 9.3(4.1) 9.4(4.3) 0.3(0.3) 0.4(0.4) 0.0(0.0) 0.1(0.2) 0.8 0.4 1.3 1.7 0.8 1.1 1.0 1.1 0.7 0.7 0.9 0.7 0.5 0.5 0.5 jyj < 1 0.8 1.0 1.0 0.6 0.5 0.5 jyj < 1 0.8 1.0 0.6 0.5 1 < jyj < 2 0.7 0.6 0.7 0.6 0.5 0.5 0.5 1 < jyj < 2 0.8 0.7 0.8 0.6 0.5 0.4 1 < jyj < 2 0.8 0.8 0.6 0.5 0–30 0–3 3–7 7–11 11–15 15–30 0–30 0–7 7–12 12–30 0–30 0–2 2–5 5–8 8–11 11–15 15–30 0–30 0–3 3–7 7–11 11–15 15–30 0–30 0–7 7–12 12–30 in Table VII for the full rapidity range, for two rapidity ranges in Table VIII, and for five rapidity ranges in Table IX. The largest sources of systematic uncertainty arise from the statistical precision of the efficiency measurements from data and from the luminosity normalization, with the latter dominating. 0.0 0.7 0.3 0.4 0.3 0.3 0.3 0.9 1.3 1.5 1.0 0.7 0.6 0.5 0.5 1.6 6.2 0.3 0.6 0.4 0.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.7 0.4 0.3 0.3 0.2 1.0 1.4 1.5 1.0 0.7 0.4 1.9 13.9 13.1 1.7 1.6 1.9 3.2 3.4 3.4 3.4 3.6 4.2 0.1 0.5 0.1 0.3 1.0 1.7 0.9 0.5 3.4 22.9 2.2 0.2 5.4 5.4 5.7 6.0 0.0 0.2 0.3 0.5 0.6 0.8 0.9 0.9 0.6 0.5 0.6 0.7 0.6 0.8 0.5 7.3 4.3 0.4 1.7 0.1 2.0 3.0 3.0 3.0 3.0 3.1 3.0 3.1 0.0 0.2 0.4 0.7 1.1 1.0 1.0 0.5 0.6 0.8 0.7 0.7 1.9 21.9 5.4 4.4 1.5 3.4 3.3 3.8 3.4 3.5 4.6 7.2 0.1 0.5 1.1 0.9 1.0 0.3 0.6 0.5 3.4 26.5 6.2 1.5 5.5 6.5 6.7 5.9 VIII. RESULTS AND DISCUSSION The analysispof ffiffi the collision data acquired by the CMS experiment at s ¼ 7 TeV, corresponding to an integrated luminosity of 3:1  0:3 pb 1 , yields a measurement of the ðnSÞ integrated production cross sections for the range jyj < 2: 112004-13 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) TABLE IX. Relative values of the systematic uncertainties on the ð1SÞ production cross section times the dimuon branching fraction, in rapidity intervals for pT < 30 GeV=c, assuming unpolarized production, in percent. The abbreviations used indicate the various systematic uncertainty sources: the statistical uncertainty in the estimation of the acceptance (A) and the trigger and muon identification efficiencies ("trig;id ); imperfect knowledge of the momentum scale (Sp ), the production pT spectrum (ApT ), the efficiency of the vertex-quality criterion (Avtx ), and the modeling of FSR (AFSR ); the use of the T&P method (T&P); the bias from using the J= c to determine single-muon efficiencies rather than the  ("J= c ; ); the background PDF (BG); the signal PDF, the fitter, the tracking efficiency, and effects arising from the efficiency binning (add). Values in parentheses denote the negative part of the asymmetric uncertainty. The luminosity uncertainty of 11% is not included in the table. jyj 0.0–2.0 0.0–0.4 0.4–0.8 0.8–1.2 1.2–1.6 1.6–2.0 A ð1SÞ "trig;id pT < 30 GeV=c Sp ApT Avtx 0.5 0.6 0.6 0.5 0.5 0.6 7.5(4.6) 6.8(4.9) 6.8(4.7) 7.5(4.9) 7.7(4.0) 9.3(4.0) 0.3(0.3) 0.4(0.4) 0.4(0.4) 0.3(0.3) 0.2(0.2) 0.0(0.1) 0.6 0.7 0.6 0.6 0.6 0.6 0.7 0.3 0.3 1.0 1.2 0.9 0.7 0.7 0.7 0.7 0.6 0.6 d2σ/dp dy × Β(µµ) (nb/(GeV/c)) 10-1 Υ (1S) Υ (2S) Υ (3S) 0.9 1.5 1.1 0.7 0.5 0.6 add. 0.5 0.1 5.4 2.9 4.0 5.0 3.0 3.0 3.0 3.0 3.0 3.0 CMS, s = 7 TeV L = 3 pb-1 10-1 |y|<1 1<|y|<2 Υ (1S) 10-2 T 10-2 10-3 Lumi. uncertainty (11%) not shown 5 10 15 20 25 10-3 Lumi. uncertainty (11%) not shown 30 5 pΥ (GeV/c) 10 15 20 25 30 pΥ (GeV/c) T T 1 d2σ/dp dy × Β(µµ) (nb/(GeV/c)) 1 CMS, s = 7 TeV L = 3 pb-1 10-1 |y|<1 1<|y|<2 Υ (2S) CMS, s = 7 TeV L = 3 pb-1 10-1 |y|<1 1<|y|<2 Υ (3S) 10-2 T 10-2 T d2σ/dp dy × Β(µµ) (nb/(GeV/c)) 0.0 0.6 0.3 0.1 0.2 0.9 BG 1 CMS, s = 7 TeV L = 3 pb-1, |y|<2 T d2σ/dp dy × Β(µµ) (nb/(GeV/c)) 1 AFSR T&P "J= c ; uncertainties are in percent 10-3 Lumi. uncertainty (11%) not shown 5 10 15 20 25 10-3 30 pΥT (GeV/c) Lumi. uncertainty (11%) not shown 5 10 15 20 25 30 pΥT (GeV/c) FIG. 7. ðnSÞ differential cross sections in the rapidity interval jyj < 2 (top left), and in the rapidity intervals jyj < 1 and 1 < jyj < 2 for the ð1SÞ (top right), ð2SÞ (bottom left) and ð3SÞ (bottom right). The uncertainties on the points represent the sum of the statistical and systematic uncertainties added in quadrature, excluding the uncertainty on the integrated luminosity (11%). 112004-14 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) 0.8 dσ/dy × Β(µµ) (nb) 4 CMS, s = 7 TeV L = 3 pb-1 0.7 Υ (1S) 0.6 data 3.5 σ × Β (µµ) ratio 4.5 PYTHIA (normalized) 3 2.5 2 1.5 1 0 Υ (3S) / Υ (1S) 0.5 Υ (2S) / Υ (1S) 0.4 0.3 0.2 0.1 Lumi. uncertainty (11%) not shown 0.5 CMS, s = 7 TeV L = 3 pb-1, |y|<2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 5 10 yΥ 15 20 25 30 pΥT (GeV/c) PYTHIA (normalized) 10-1 |yΥ | < 2 10-2 10-3 s = 7 TeV, L = 3 pb-1 0 5 PYTHIA (normalized) 10-1 |yΥ | < 2 10-2 Υ (2S) T Υ (1S) CMS data 10 15 20 25 30 10-3 s = 7 TeV, L = 3 pb-1 0 5 1 CMS data PYTHIA (normalized) 10-1 |yΥ | < 2 10-2 Υ (3S) T CMS data 1 d2σ/dp dy × Β(µµ) (nb/(GeV/c)) d2σ/dp dy × Β(µµ) (nb/(GeV/c)) 1 T d2σ/dp dy × Β(µµ) (nb/(GeV/c)) FIG. 8 (color online). (Left) Differential ð1SÞ cross section as a function of rapidity in the transverse-momentum range pT < 30 GeV=c (data points) and normalized PYTHIA prediction (line). The uncertainties on the points represent the sum of the statistical and systematic uncertainties added in quadrature, excluding the uncertainty on the integrated luminosity (11%). (Right) Cross section ratios for ðnSÞ states as a function of pT in the rapidity range jyj < 2. 10 pY (GeV/c) 15 20 25 30 10-3 s = 7 TeV, L = 3 pb-1 0 pY (GeV/c) T 5 10 15 20 25 30 pY (GeV/c) T T FIG. 9. Differential cross sections of the ðnSÞ as a function of pT in the rapidity range jyj < 2, and comparison to the PYTHIA predictions normalized to the measured pT -integrated cross sections; ð1SÞ (left), ð2SÞ (middle), and ð3SÞ (right). The theory prediction is shown in the form of a continuous spectrum (curve) and integrated in the same pT bins as employed in the measurement (horizontal lines). The PYTHIA curve is used to calculate the abscissa of the data points [28]. The uncertainties on the points represent the sum of the statistical and systematic uncertainties added in quadrature, excluding the uncertainty on the integrated luminosity (11%). TABLE X. The ratios of ðnSÞ cross sections for different  pT ranges in the unpolarized scenario. The first uncertainty is statistical and the second is systematic. The ratios are independent of the luminosity normalization and its uncertainty. pT (GeV=c) 0–30 0–3 3–6 6–9 9–14 14–20 20–30 ðpp ! ð1SÞXÞ  Bðð1SÞ ! þ  Þ ¼ 7:37  0:13ðstat:Þðsyst:Þ  0:81ðlumi:Þ nb; ðpp ! ð2SÞXÞ  Bðð2SÞ ! þ  Þ ¼ 1:90  0:08ðstat:Þðsyst:Þ  0:21ðlumi:Þ nb; ð3SÞ=ð1SÞ ð2SÞ=ð1SÞ 0:14  0:01  0:02 0:11  0:02  0:02 0:11  0:02  0:03 0:17  0:03  0:03 0:20  0:03  0:03 0:26  0:07  0:04 0:44  0:16  0:08 0:26  0:02  0:04 0:22  0:03  0:04 0:25  0:03  0:05 0:28  0:04  0:04 0:33  0:04  0:05 0:35  0:08  0:05 0:36  0:14  0:06 ðpp ! ð3SÞXÞ  Bðð3SÞ ! þ  Þ ¼ 1:02  0:07ðstat:Þðsyst:Þ  0:11ðlumi:Þ nb: 0:08 þ 0:11 0:12 þ 0:18 0:42 þ 0:61 The ð1SÞ and ð2SÞ measurements include feed-down from higher-mass states, such as the b family and the ð3SÞ. These measurements assume unpolarized ðnSÞ 112004-15 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) FIG. 10 (color online). Comparison of the CMS differential ðnSÞ cross sections as a function of pT , normalized by TOT ¼ P ðd=dpT ÞpT , to previous measurements; ð1SÞ (left), ð2SÞ (middle), and ð3SÞ (right). production. Assumptions of fully-transverse or fullylongitudinal polarizations change the measured cross section values by about 20%. The differential ðnSÞ cross sections as a function of pT for the rapidity intervals jyj < 1, 1 < jyj < 2, and jyj < 2 are shown in Fig. 7. The pT dependence of the cross section in the two exclusive rapidity intervals is the same within the uncertainties. The ð1SÞ differential cross sections as a function of rapidity and integrated in pT are shown in the left plot of Fig. 8. The cross section shows a slight decline towards jyj ¼ 2, consistent with the expectation from PYTHIA. The ratios of ðnSÞ differential cross sections as a function of pT are reported in Table X and shown in the right plot of Fig. 8. The uncertainty associated with the luminosity determination cancels in the computation of the ratios. Both ratios increase with pT . In Fig. 9 the differential cross sections for the ð1SÞ, ð2SÞ, and ð3SÞ are compared to PYTHIA. The normalized pT -spectrum prediction from PYTHIA is consistent with the measurements, while the integrated cross section is overestimated by about a factor of 2. We have not included parameter uncertainties in the PYTHIA calculation. We do not compare our measurements pffiffi to other models as no published predictions exist at s ¼ 7 TeV for  production. The ðnSÞ integrated cross sections are expected pffiffi to increase with s. As the gluon-gluon amplitude is expected to dominate production of  resonances at both TABLE XI. ð1SÞ cross section measurements at several  expericenter-of-mass collision energies from the Tevatron (pp) ments CDF and D0 and from CMS (pp). The first uncertainty is statistical, the second is systematic, and the third is associated with the luminosity determination. Exp. pffiffi s (TeV) CDF D0 1.8 CMS 1.96 7.0 ð Þ 1  Bð ! Þ ðpp ! ð1SÞXÞ  y rapidity range 0:680  0:015  0:018  0:026 nb [4] 0:628  0:016  0:065  0:038 nb [5] jyj < 0:4 jyj < 0:6 2:02  0:03þ0:16 0:12  0:22 nb (this work) jyj < 1:0 the LHC and the Tevatron, we compare, in Table XI, our measurement of the ð1SÞ integrated cross section in the central rapidity region jyj < 1 to previous measurements [4,5] performed in pp collisions. Previous measurements were performed in the range pT < 20 GeV=c, and jyj < 0:4 for CDF and jyj < 1:8 for DØ. Under the assumption that the cross section is uniform in rapidity for the measurement range pffiffi of each experiment, the cross section we measure at s ¼ 7 TeV is about 3 times larger than the cross section measured at the Tevatron. Although our measurement extends to higher pT than the Tevatron measurements, the fraction of the cross section satisfying pT > 20 GeV=c is less than 1% and so can be neglected for this comparison. We compare the normalized differential cross sections in pT at the Tevatron to our measurements in Fig. 10. IX. SUMMARY The study of the ðnSÞ resonances provides important information on the process of hadroproduction of heavy quarks. In this paper we have presented the first measurement of the ðnSÞ differential production cross section pffiffi for proton-proton collisions at s ¼ 7 TeV. Integrated over the range pT < 30 GeV=c and jyj < 2, we find the product of the ð1SÞ production cross section and dimuon branching fraction to be ðpp ! ð1SÞXÞ  Bðð1SÞ ! þ  Þ ¼ 7:37  0:13þ0:61 0:42  0:81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. Under the assumption that the cross section is uniform in rapidity for the measurement range pffiffi of each experiment, the cross section we measure at s ¼ 7 TeV is about 3 times larger than the cross section measured at the Tevatron. The ð2SÞ and ð3SÞ integrated cross sections and the ð1SÞ, ð2SÞ, and ð3SÞ differential cross sections in transverse-momentum in two regions of rapidity have also been determined. The differential cross 112004-16 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy, and Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLPFAI); the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, and Russian Ministry of Atomic Energy; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIABelgium); and the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium). [1] N. Brambilla et al., Report No. CERN-2005-005, 2004, http://cdsweb.cern.ch/record/872545. [2] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995). [3] P. Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008). [4] D. E. Acosta et al. (CDF), Phys. Rev. Lett. 88, 161802 (2002). [5] V. M. Abazov et al. (D0), Phys. Rev. Lett. 94, 232001 (2005); 100, 049902(E) (2008). [6] T. Sjöstrand, S. Mrenna, and P. Z. Skands, J. High Energy Phys. 05 (2006) 026. [7] CMS Collaboration, JINST 5, T03009 (2010). [8] CMS Collaboration, JINST 3, S08004 (2008). [9] CMS Collaboration, CMS-PAS-EWK-10-004, 2010, http://cdsweb.cern.ch/record/1279145. [10] CMS Collaboration, Eur. Phys. J. C 70, 1165 (2010). [11] M. Krämer, Prog. Part. Nucl. Phys. 47, 141 (2001). [12] M. Bargiotti and V. Vagnoni, Report No. LHCb-2007-042, 2007, http://cdsweb.cern.ch/record/1042611. [13] E. Barberio, B. van Eijk, and Z. Wa̧s, Comput. Phys. Commun. 66, 115 (1991). [14] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994). section measurements have been compared to previous measurements and PYTHIA. Finally, the cross section ratios of the three ðnSÞ have been measured. The dominant sources of systematic uncertainty on the cross-section measurement arise from the tag-and-probe determination of the efficiencies and from the integrated luminosity normalization. Both will be reduced with additional data. Assuming fully-transverse or fully-longitudinal production polarization instead of unpolarized ðnSÞ production changes the cross-section measurements by about 20%. With a larger accumulated data sample, it will become possible to perform a simultaneous measurement of the polarization and the cross section. This work provides new experimental results which will serve as input to ongoing theoretical investigations of the correct description of bottomonium production. ACKNOWLEDGMENTS 112004-17 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) [15] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [16] CMS Collaboration, Report No. CMS-PAS-MUO-10-002, 2010, http://cdsweb.cern.ch/record/1279140. [17] CMS Collaboration, JINST 5, T03021 (2010). [18] CMS Collaboration, Report No. CMS-PAS-TRK-10-003, 2010, http://cdsweb.cern.ch/record/1279138. [19] CMS Collaboration, Report No. CMS-PAS-TRK-10-004, 2010, http://cdsweb.cern.ch/record/1279137. [20] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001). [21] P. Faccioli et al., Eur. Phys. J. C 69, 657 (2010). [22] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977). [23] CMS Collaboration, Report No. CMS-PAS-TRK-10-002, 2010, http://cdsweb.cern.ch/record/1279139 . [24] CMS Collaboration, Eur. Phys. J. C 71, 1575 (2011). [25] M. J. Oreglia, Ph.D. thesis, Stanford University 1980] http://www.slac.stanford.edu/pubs/slacreports/slac-r236.html. [26] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010). [27] CMS Collaboration, JINST 5, T03022 (2010). [28] G. D. Lafferty and T. R. Wyatt, Nucl. Instrum. Methods Phys. Res., Sect. A 355, 541 (1995). V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2 M. Friedl,2 R. Frühwirth,2 V. M. Ghete,2 J. Hammer,2,b S. Hänsel,2 C. Hartl,2 M. Hoch,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2 G. Kasieczka,2 W. Kiesenhofer,2 M. Krammer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 F. Teischinger,2 W. Waltenberger,2 G. Walzel,2 E. Widl,2 C.-E. Wulz,2 V. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3 L. Benucci,4 L. Ceard,4 K. Cerny,4 E. A. De Wolf,4 X. Janssen,4 T. Maes,4 L. Mucibello,4 S. Ochesanu,4 B. Roland,4 R. Rougny,4 M. Selvaggi,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 V. Adler,5 S. Beauceron,5 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 O. Devroede,5 R. Gonzalez Suarez,5 A. Kalogeropoulos,5 J. Maes,5 M. Maes,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5 G. P. Van Onsem,5 I. Villella,5 O. Charaf,6 B. Clerbaux,6 G. De Lentdecker,6 V. Dero,6 A. P. R. Gay,6 G. H. Hammad,6 T. Hreus,6 P. E. Marage,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 J. Wickens,6 S. Costantini,7 M. Grunewald,7 B. Klein,7 A. Marinov,7 J. Mccartin,7 D. Ryckbosch,7 F. Thyssen,7 M. Tytgat,7 L. Vanelderen,7 P. Verwilligen,7 S. Walsh,7 N. Zaganidis,7 S. Basegmez,8 G. Bruno,8 J. Caudron,8 J. De Favereau De Jeneret,8 C. Delaere,8 P. Demin,8 D. Favart,8 A. Giammanco,8 G. Grégoire,8 J. Hollar,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 S. Ovyn,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8 L. Quertenmont,8 N. Schul,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. A. Alves,10 D. De Jesus Damiao,10 M. E. Pol,10 M. H. G. Souza,10 W. Carvalho,11 E. M. Da Costa,11 C. De Oliveira Martins,11 S. Fonseca De Souza,11 L. Mundim,11 H. Nogima,11 V. Oguri,11 W. L. Prado Da Silva,11 A. Santoro,11 S. M. Silva Do Amaral,11 A. Sznajder,11 F. A. Dias,12 M. A. F. Dias,12 T. R. Fernandez Perez Tomei,12 E. M. Gregores,12,c F. Marinho,12 S. F. Novaes,12 Sandra S. Padula,12 N. Darmenov,13,b L. Dimitrov,13 V. Genchev,13,b P. Iaydjiev,13,b S. Piperov,13 M. Rodozov,13 S. Stoykova,13 G. Sultanov,13 V. Tcholakov,13 R. Trayanov,13 I. Vankov,13 M. Dyulendarova,14 R. Hadjiiska,14 V. Kozhuharov,14 L. Litov,14 E. Marinova,14 M. Mateev,14 B. Pavlov,14 P. Petkov,14 J. G. Bian,15 G. M. Chen,15 H. S. Chen,15 C. H. Jiang,15 D. Liang,15 S. Liang,15 J. Wang,15 J. Wang,15 X. Wang,15 Z. Wang,15 M. Xu,15 M. Yang,15 J. Zang,15 Z. Zhang,15 Y. Ban,16 S. Guo,16 W. Li,16 Y. Mao,16 S. J. Qian,16 H. Teng,16 L. Zhang,16 B. Zhu,16 A. Cabrera,17 B. Gomez Moreno,17 A. A. Ocampo Rios,17 A. F. Osorio Oliveros,17 J. C. Sanabria,17 N. Godinovic,18 D. Lelas,18 K. Lelas,18 R. Plestina,18,d D. Polic,18 I. Puljak,18 Z. Antunovic,19 M. Dzelalija,19 V. Brigljevic,20 S. Duric,20 K. Kadija,20 S. Morovic,20 A. Attikis,21 M. Galanti,21 J. Mousa,21 C. Nicolaou,21 F. Ptochos,21 P. A. Razis,21 H. Rykaczewski,21 Y. Assran,22,e M. A. Mahmoud,22,f A. Hektor,23 M. Kadastik,23 K. Kannike,23 M. Müntel,23 M. Raidal,23 L. Rebane,23 V. Azzolini,24 P. Eerola,24 S. Czellar,25 J. Härkönen,25 A. Heikkinen,25 V. Karimäki,25 R. Kinnunen,25 J. Klem,25 M. J. Kortelainen,25 T. Lampén,25 K. Lassila-Perini,25 S. Lehti,25 T. Lindén,25 P. Luukka,25 T. Mäenpää,25 E. Tuominen,25 J. Tuominiemi,25 E. Tuovinen,25 D. Ungaro,25 L. Wendland,25 K. Banzuzi,26 A. Korpela,26 T. Tuuva,26 D. Sillou,27 M. Besancon,28 S. Choudhury,28 M. Dejardin,28 D. Denegri,28 B. Fabbro,28 J. L. Faure,28 F. Ferri,28 S. Ganjour,28 F. X. Gentit,28 A. Givernaud,28 P. Gras,28 G. Hamel de Monchenault,28 P. Jarry,28 E. Locci,28 J. Malcles,28 M. Marionneau,28 L. Millischer,28 J. Rander,28 A. Rosowsky,28 I. Shreyber,28 M. Titov,28 P. Verrecchia,28 S. Baffioni,29 F. Beaudette,29 L. Bianchini,29 M. Bluj,29,g C. Broutin,29 P. Busson,29 C. Charlot,29 T. Dahms,29 L. Dobrzynski,29 R. Granier de Cassagnac,29 M. Haguenauer,29 P. Miné,29 C. Mironov,29 C. Ochando,29 P. Paganini,29 D. Sabes,29 R. Salerno,29 Y. Sirois,29 C. Thiebaux,29 B. Wyslouch,29,h A. Zabi,29 J.-L. Agram,30,i J. Andrea,30 A. Besson,30 D. Bloch,30 D. Bodin,30 J.-M. Brom,30 M. Cardaci,30 E. C. Chabert,30 C. Collard,30 E. Conte,30,i F. Drouhin,30,i C. Ferro,30 J.-C. Fontaine,30,i D. Gelé,30 U. Goerlach,30 S. Greder,30 P. Juillot,30 M. Karim,30,i A.-C. Le Bihan,30 Y. Mikami,30 P. Van Hove,30 F. Fassi,31 D. Mercier,31 C. Baty,32 N. Beaupere,32 112004-18 UPSILON PRODUCTION CROSS SECTION IN pp . . . 32 32 PHYSICAL REVIEW D 83, 112004 (2011) 32 32 M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, N. Chanon,32 R. Chierici,32 D. Contardo,32 P. Depasse,32 H. El Mamouni,32 A. Falkiewicz,32 J. Fay,32 S. Gascon,32 B. Ille,32 T. Kurca,32 T. Le Grand,32 M. Lethuillier,32 L. Mirabito,32 S. Perries,32 V. Sordini,32 S. Tosi,32 Y. Tschudi,32 P. Verdier,32 H. Xiao,32 V. Roinishvili,33 G. Anagnostou,34 M. Edelhoff,34 L. Feld,34 N. Heracleous,34 O. Hindrichs,34 R. Jussen,34 K. Klein,34 J. Merz,34 N. Mohr,34 A. Ostapchuk,34 A. Perieanu,34 F. Raupach,34 J. Sammet,34 S. Schael,34 D. Sprenger,34 H. Weber,34 M. Weber,34 B. Wittmer,34 M. Ata,35 W. Bender,35 M. Erdmann,35 J. Frangenheim,35 T. Hebbeker,35 A. Hinzmann,35 K. Hoepfner,35 C. Hof,35 T. Klimkovich,35 D. Klingebiel,35 P. Kreuzer,35 D. Lanske,35,a C. Magass,35 G. Masetti,35 M. Merschmeyer,35 A. Meyer,35 P. Papacz,35 H. Pieta,35 H. Reithler,35 S. A. Schmitz,35 L. Sonnenschein,35 J. Steggemann,35 D. Teyssier,35 M. Bontenackels,36 M. Davids,36 M. Duda,36 G. Flügge,36 H. Geenen,36 M. Giffels,36 W. Haj Ahmad,36 D. Heydhausen,36 T. Kress,36 Y. Kuessel,36 A. Linn,36 A. Nowack,36 L. Perchalla,36 O. Pooth,36 J. Rennefeld,36 P. Sauerland,36 A. Stahl,36 M. Thomas,36 D. Tornier,36 M. H. Zoeller,36 M. Aldaya Martin,37 W. Behrenhoff,37 U. Behrens,37 M. Bergholz,37,j K. Borras,37 A. Cakir,37 A. Campbell,37 E. Castro,37 D. Dammann,37 G. Eckerlin,37 D. Eckstein,37 A. Flossdorf,37 G. Flucke,37 A. Geiser,37 I. Glushkov,37 J. Hauk,37 H. Jung,37 M. Kasemann,37 I. Katkov,37 P. Katsas,37 C. Kleinwort,37 H. Kluge,37 A. Knutsson,37 D. Krücker,37 E. Kuznetsova,37 W. Lange,37 W. Lohmann,37,j R. Mankel,37 M. Marienfeld,37 I.-A. Melzer-Pellmann,37 A. B. Meyer,37 J. Mnich,37 A. Mussgiller,37 J. Olzem,37 A. Parenti,37 A. Raspereza,37 A. Raval,37 R. Schmidt,37,j T. Schoerner-Sadenius,37 N. Sen,37 M. Stein,37 J. Tomaszewska,37 D. Volyanskyy,37 R. Walsh,37 C. Wissing,37 C. Autermann,38 S. Bobrovskyi,38 J. Draeger,38 H. Enderle,38 U. Gebbert,38 K. Kaschube,38 G. Kaussen,38 R. Klanner,38 J. Lange,38 B. Mura,38 S. Naumann-Emme,38 F. Nowak,38 N. Pietsch,38 C. Sander,38 H. Schettler,38 P. Schleper,38 M. Schröder,38 T. Schum,38 J. Schwandt,38 A. K. Srivastava,38 H. Stadie,38 G. Steinbrück,38 J. Thomsen,38 R. Wolf,38 C. Barth,39 J. Bauer,39 V. Buege,39 T. Chwalek,39 W. De Boer,39 A. Dierlamm,39 G. Dirkes,39 M. Feindt,39 J. Gruschke,39 C. Hackstein,39 F. Hartmann,39 S. M. Heindl,39 M. Heinrich,39 H. Held,39 K. H. Hoffmann,39 S. Honc,39 T. Kuhr,39 D. Martschei,39 S. Mueller,39 Th. Müller,39 M. Niegel,39 O. Oberst,39 A. Oehler,39 J. Ott,39 T. Peiffer,39 D. Piparo,39 G. Quast,39 K. Rabbertz,39 F. Ratnikov,39 M. Renz,39 C. Saout,39 A. Scheurer,39 P. Schieferdecker,39 F.-P. Schilling,39 G. Schott,39 H. J. Simonis,39 F. M. Stober,39 D. Troendle,39 J. Wagner-Kuhr,39 M. Zeise,39 V. Zhukov,39,k E. B. Ziebarth,39 G. Daskalakis,40 T. Geralis,40 S. Kesisoglou,40 A. Kyriakis,40 D. Loukas,40 I. Manolakos,40 A. Markou,40 C. Markou,40 C. Mavrommatis,40 E. Petrakou,40 L. Gouskos,41 T. J. Mertzimekis,41 A. Panagiotou,41,b I. Evangelou,42 C. Foudas,42 P. Kokkas,42 N. Manthos,42 I. Papadopoulos,42 V. Patras,42 F. A. Triantis,42 A. Aranyi,43 G. Bencze,43 L. Boldizsar,43 G. Debreczeni,43 C. Hajdu,43,b D. Horvath,43,l A. Kapusi,43 K. Krajczar,43,m A. Laszlo,43 F. Sikler,43 G. Vesztergombi,43,m N. Beni,44 J. Molnar,44 J. Palinkas,44 Z. Szillasi,44 V. Veszpremi,44 P. Raics,45 Z. L. Trocsanyi,45 B. Ujvari,45 S. Bansal,46 S. B. Beri,46 V. Bhatnagar,46 N. Dhingra,46 M. Jindal,46 M. Kaur,46 J. M. Kohli,46 M. Z. Mehta,46 N. Nishu,46 L. K. Saini,46 A. Sharma,46 A. P. Singh,46 J. B. Singh,46 S. P. Singh,46 S. Ahuja,47 S. Bhattacharya,47 B. C. Choudhary,47 P. Gupta,47 S. Jain,47 S. Jain,47 A. Kumar,47 R. K. Shivpuri,47 R. K. Choudhury,48 D. Dutta,48 S. Kailas,48 S. K. Kataria,48 A. K. Mohanty,48,b L. M. Pant,48 P. Shukla,48 P. Suggisetti,48 T. Aziz,49 M. Guchait,49,n A. Gurtu,49 M. Maity,49,o D. Majumder,49 G. Majumder,49 K. Mazumdar,49 G. B. Mohanty,49 A. Saha,49 K. Sudhakar,49 N. Wickramage,49 S. Banerjee,50 S. Dugad,50 N. K. Mondal,50 H. Arfaei,51 H. Bakhshiansohi,51 S. M. Etesami,51 A. Fahim,51 M. Hashemi,51 A. Jafari,51 M. Khakzad,51 A. Mohammadi,51 M. Mohammadi Najafabadi,51 S. Paktinat Mehdiabadi,51 B. Safarzadeh,51 M. Zeinali,51 M. Abbrescia,52a,52b L. Barbone,52a,52b C. Calabria,52a,52b A. Colaleo,52a D. Creanza,52a,52c N. De Filippis,52a,52c M. De Palma,52a,52b A. Dimitrov,52a L. Fiore,52a G. Iaselli,52a,52c L. Lusito,52a,52b,b G. Maggi,52a,52c M. Maggi,52a N. Manna,52a,52b B. Marangelli,52a,52b S. My,52a,52c S. Nuzzo,52a,52b N. Pacifico,52a,52b G. A. Pierro,52a A. Pompili,52a,52b G. Pugliese,52a,52c F. Romano,52a,52c G. Roselli,52a,52b G. Selvaggi,52a,52b L. Silvestris,52a R. Trentadue,52a S. Tupputi,52a,52b G. Zito,52a G. Abbiendi,53a A. C. Benvenuti,53a D. Bonacorsi,53a S. Braibant-Giacomelli,53a,53b P. Capiluppi,53a,53b A. Castro,53a,53b F. R. Cavallo,53a M. Cuffiani,53a,53b G. M. Dallavalle,53a F. Fabbri,53a A. Fanfani,53a,53b D. Fasanella,53a P. Giacomelli,53a M. Giunta,53a C. Grandi,53a S. Marcellini,53a M. Meneghelli,53a,53b A. Montanari,53a F. L. Navarria,53a,53b F. Odorici,53a A. Perrotta,53a F. Primavera,53a A. M. Rossi,53a,53b T. Rovelli,53a,53b G. Siroli,53a,53b R. Travaglini,53a,53b S. Albergo,54a,54b G. Cappello,54a,54b M. Chiorboli,54a,54b,b S. Costa,54a,54b A. Tricomi,54a,54b C. Tuve,54a G. Barbagli,55a V. Ciulli,55a,55b C. Civinini,55a R. D’Alessandro,55a,55b E. Focardi,55a,55b S. Frosali,55a,55b E. Gallo,55a C. Genta,55a P. Lenzi,55a,55b M. Meschini,55a S. Paoletti,55a G. Sguazzoni,55a A. Tropiano,55a,b L. Benussi,56 S. Bianco,56 112004-19 32 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) 56,p 56 56 S. Colafranceschi, F. Fabbri, D. Piccolo, P. Fabbricatore, R. Musenich,57 A. Benaglia,58a,58b F. De Guio,58a,58b,b L. Di Matteo,58a,58b A. Ghezzi,58a,58b,b M. Malberti,58a,58b S. Malvezzi,58a A. Martelli,58a,58b A. Massironi,58a,58b D. Menasce,58a L. Moroni,58a M. Paganoni,58a,58b D. Pedrini,58a S. Ragazzi,58a,58b N. Redaelli,58a S. Sala,58a T. Tabarelli de Fatis,58a,58b V. Tancini,58a,58b S. Buontempo,59a C. A. Carrillo Montoya,59a A. Cimmino,59a,59b A. De Cosa,59a,59b M. De Gruttola,59a,59b F. Fabozzi,59a,q A. O. M. Iorio,59a L. Lista,59a M. Merola,59a,59b P. Noli,59a,59b P. Paolucci,59a P. Azzi,60a N. Bacchetta,60a P. Bellan,60a,60b D. Bisello,60a,60b A. Branca,60a R. Carlin,60a,60b P. Checchia,60a M. De Mattia,60a,60b T. Dorigo,60a U. Dosselli,60a F. Fanzago,60a F. Gasparini,60a,60b U. Gasparini,60a,60b P. Giubilato,60a,60b A. Gresele,60a,60c S. Lacaprara,60a I. Lazzizzera,60a,60c M. Margoni,60a,60b M. Mazzucato,60a A. T. Meneguzzo,60a,60b M. Nespolo,60a L. Perrozzi,60a,b N. Pozzobon,60a,60b P. Ronchese,60a,60b F. Simonetto,60a,60b E. Torassa,60a M. Tosi,60a,60b S. Vanini,60a,60b P. Zotto,60a,60b G. Zumerle,60a,60b P. Baesso,61a,61b U. Berzano,61a C. Riccardi,61a,61b P. Torre,61a,61b P. Vitulo,61a,61b C. Viviani,61a,61b M. Biasini,62a,62b G. M. Bilei,62a B. Caponeri,62a,62b L. Fanò,62a,62b P. Lariccia,62a,62b A. Lucaroni,62a,62b,b G. Mantovani,62a,62b M. Menichelli,62a A. Nappi,62a,62b A. Santocchia,62a,62b L. Servoli,62a S. Taroni,62a,62b M. Valdata,62a,62b R. Volpe,62a,62b,b P. Azzurri,63a,63c G. Bagliesi,63a J. Bernardini,63a,63b T. Boccali,63a,b G. Broccolo,63a,63c R. Castaldi,63a R. T. D’Agnolo,63a,63c R. Dell’Orso,63a F. Fiori,63a,63b L. Foà,63a,63c A. Giassi,63a A. Kraan,63a F. Ligabue,63a,63c T. Lomtadze,63a L. Martini,63a A. Messineo,63a,63b F. Palla,63a F. Palmonari,63a S. Sarkar,63a,63c A. T. Serban,63a P. Spagnolo,63a R. Tenchini,63a G. Tonelli,63a,63b,b A. Venturi,63a,b P. G. Verdini,63a L. Barone,64a,64b F. Cavallari,64a D. Del Re,64a,64b E. Di Marco,64a,64b M. Diemoz,64a D. Franci,64a,64b M. Grassi,64a E. Longo,64a,64b G. Organtini,64a,64b A. Palma,64a,64b F. Pandolfi,64a,64b,b R. Paramatti,64a S. Rahatlou,64a,64b N. Amapane,65a,65b R. Arcidiacono,65a,65c S. Argiro,65a,65b M. Arneodo,65a,65c C. Biino,65a C. Botta,65a,65b,b N. Cartiglia,65a R. Castello,65a,65b M. Costa,65a,65b N. Demaria,65a A. Graziano,65a,65b,b C. Mariotti,65a M. Marone,65a,65b S. Maselli,65a E. Migliore,65a,65b G. Mila,65a,65b V. Monaco,65a,65b M. Musich,65a,65b M. M. Obertino,65a,65c N. Pastrone,65a M. Pelliccioni,65a,65b,b A. Romero,65a,65b M. Ruspa,65a,65c R. Sacchi,65a,65b V. Sola,65a,65b A. Solano,65a,65b A. Staiano,65a D. Trocino,65a,65b A. Vilela Pereira,65a,65b,b F. Ambroglini,66a,66b S. Belforte,66a F. Cossutti,66a G. Della Ricca,66a,66b B. Gobbo,66a D. Montanino,66a,66b A. Penzo,66a S. G. Heo,67 S. Chang,68 J. Chung,68 D. H. Kim,68 G. N. Kim,68 J. E. Kim,68 D. J. Kong,68 H. Park,68 D. Son,68 D. C. Son,68 Zero Kim,69 J. Y. Kim,69 S. Song,69 S. Choi,70 B. Hong,70 M. Jo,70 H. Kim,70 J. H. Kim,70 T. J. Kim,70 K. S. Lee,70 D. H. Moon,70 S. K. Park,70 H. B. Rhee,70 E. Seo,70 S. Shin,70 K. S. Sim,70 M. Choi,71 S. Kang,71 H. Kim,71 C. Park,71 I. C. Park,71 S. Park,71 G. Ryu,71 Y. Choi,72 Y. K. Choi,72 J. Goh,72 J. Lee,72 S. Lee,72 H. Seo,72 I. Yu,72 M. J. Bilinskas,73 I. Grigelionis,73 M. Janulis,73 D. Martisiute,73 P. Petrov,73 T. Sabonis,73 H. Castilla Valdez,74 E. De La Cruz Burelo,74 R. Lopez-Fernandez,74 A. Sánchez Hernández,74 L. M. Villasenor-Cendejas,74 S. Carrillo Moreno,75 F. Vazquez Valencia,75 H. A. Salazar Ibarguen,76 E. Casimiro Linares,77 A. Morelos Pineda,77 M. A. Reyes-Santos,77 P. Allfrey,78 D. Krofcheck,78 P. H. Butler,79 R. Doesburg,79 H. Silverwood,79 M. Ahmad,80 I. Ahmed,80 M. I. Asghar,80 H. R. Hoorani,80 W. A. Khan,80 T. Khurshid,80 S. Qazi,80 M. Cwiok,81 W. Dominik,81 K. Doroba,81 A. Kalinowski,81 M. Konecki,81 J. Krolikowski,81 T. Frueboes,82 R. Gokieli,82 M. Górski,82 M. Kazana,82 K. Nawrocki,82 K. Romanowska-Rybinska,82 M. Szleper,82 G. Wrochna,82 P. Zalewski,82 N. Almeida,83 A. David,83 P. Faccioli,83 P. G. Ferreira Parracho,83 M. Gallinaro,83 P. Martins,83 P. Musella,83 A. Nayak,83 P. Q. Ribeiro,83 J. Seixas,83 P. Silva,83 J. Varela,83,b H. K. Wöhri,83 I. Belotelov,84 P. Bunin,84 M. Finger,84 M. Finger, Jr.,84 I. Golutvin,84 A. Kamenev,84 V. Karjavin,84 G. Kozlov,84 A. Lanev,84 P. Moisenz,84 V. Palichik,84 V. Perelygin,84 S. Shmatov,84 V. Smirnov,84 A. Volodko,84 A. Zarubin,84 N. Bondar,85 V. Golovtsov,85 Y. Ivanov,85 V. Kim,85 P. Levchenko,85 V. Murzin,85 V. Oreshkin,85 I. Smirnov,85 V. Sulimov,85 L. Uvarov,85 S. Vavilov,85 A. Vorobyev,85 Yu. Andreev,86 S. Gninenko,86 N. Golubev,86 M. Kirsanov,86 N. Krasnikov,86 V. Matveev,86 A. Pashenkov,86 A. Toropin,86 S. Troitsky,86 V. Epshteyn,87 V. Gavrilov,87 V. Kaftanov,87,a M. Kossov,87,b A. Krokhotin,87 N. Lychkovskaya,87 G. Safronov,87 S. Semenov,87 V. Stolin,87 E. Vlasov,87 A. Zhokin,87 E. Boos,88 M. Dubinin,88,r L. Dudko,88 A. Ershov,88 A. Gribushin,88 O. Kodolova,88 I. Lokhtin,88 S. Obraztsov,88 S. Petrushanko,88 L. Sarycheva,88 V. Savrin,88 A. Snigirev,88 V. Andreev,89 M. Azarkin,89 I. Dremin,89 M. Kirakosyan,89 S. V. Rusakov,89 A. Vinogradov,89 I. Azhgirey,90 S. Bitioukov,90 V. Grishin,90,b V. Kachanov,90 D. Konstantinov,90 A. Korablev,90 V. Krychkine,90 V. Petrov,90 R. Ryutin,90 S. Slabospitsky,90 A. Sobol,90 L. Tourtchanovitch,90 S. Troshin,90 N. Tyurin,90 A. Uzunian,90 A. Volkov,90 P. Adzic,91,s M. Djordjevic,91 D. Krpic,91,s J. Milosevic,91 M. Aguilar-Benitez,92 J. Alcaraz Maestre,92 P. Arce,92 C. Battilana,92 E. Calvo,92 M. Cepeda,92 M. Cerrada,92 N. Colino,92 B. De La Cruz,92 C. Diez Pardos,92 D. Domı́nguez Vázquez,92 112004-20 57 UPSILON PRODUCTION CROSS SECTION IN pp . . . 92 PHYSICAL REVIEW D 83, 112004 (2011) 92 C. Fernandez Bedoya, J. P. Fernández Ramos, A. Ferrando, J. Flix,92 M. C. Fouz,92 P. Garcia-Abia,92 O. Gonzalez Lopez,92 S. Goy Lopez,92 J. M. Hernandez,92 M. I. Josa,92 G. Merino,92 J. Puerta Pelayo,92 I. Redondo,92 L. Romero,92 J. Santaolalla,92 C. Willmott,92 C. Albajar,93 G. Codispoti,93 J. F. de Trocóniz,93 J. Cuevas,94 J. Fernandez Menendez,94 S. Folgueras,94 I. Gonzalez Caballero,94 L. Lloret Iglesias,94 J. M. Vizan Garcia,94 J. A. Brochero Cifuentes,95 I. J. Cabrillo,95 A. Calderon,95 M. Chamizo Llatas,95 S. H. Chuang,95 J. Duarte Campderros,95 M. Felcini,95,t M. Fernandez,95 G. Gomez,95 J. Gonzalez Sanchez,95 C. Jorda,95 P. Lobelle Pardo,95 A. Lopez Virto,95 J. Marco,95 R. Marco,95 C. Martinez Rivero,95 F. Matorras,95 F. J. Munoz Sanchez,95 J. Piedra Gomez,95,u T. Rodrigo,95 A. Ruiz Jimeno,95 L. Scodellaro,95 M. Sobron Sanudo,95 I. Vila,95 R. Vilar Cortabitarte,95 D. Abbaneo,96 E. Auffray,96 G. Auzinger,96 P. Baillon,96 A. H. Ball,96 D. Barney,96 A. J. Bell,96,v D. Benedetti,96 C. Bernet,96,d W. Bialas,96 P. Bloch,96 A. Bocci,96 S. Bolognesi,96 H. Breuker,96 G. Brona,96 K. Bunkowski,96 T. Camporesi,96 E. Cano,96 G. Cerminara,96 T. Christiansen,96 J. A. Coarasa Perez,96 B. Curé,96 D. D’Enterria,96 A. De Roeck,96 F. Duarte Ramos,96 A. Elliott-Peisert,96 B. Frisch,96 W. Funk,96 A. Gaddi,96 S. Gennai,96 G. Georgiou,96 H. Gerwig,96 D. Gigi,96 K. Gill,96 D. Giordano,96 F. Glege,96 R. Gomez-Reino Garrido,96 M. Gouzevitch,96 P. Govoni,96 S. Gowdy,96 L. Guiducci,96 M. Hansen,96 J. Harvey,96 J. Hegeman,96 B. Hegner,96 C. Henderson,96 G. Hesketh,96 H. F. Hoffmann,96 A. Honma,96 V. Innocente,96 P. Janot,96 E. Karavakis,96 P. Lecoq,96 C. Leonidopoulos,96 C. Lourenço,96 A. Macpherson,96 T. Mäki,96 L. Malgeri,96 M. Mannelli,96 L. Masetti,96 F. Meijers,96 S. Mersi,96 E. Meschi,96 R. Moser,96 M. U. Mozer,96 M. Mulders,96 E. Nesvold,96,b M. Nguyen,96 T. Orimoto,96 L. Orsini,96 E. Perez,96 A. Petrilli,96 A. Pfeiffer,96 M. Pierini,96 M. Pimiä,96 G. Polese,96 A. Racz,96 G. Rolandi,96,w T. Rommerskirchen,96 C. Rovelli,96,x M. Rovere,96 H. Sakulin,96 C. Schäfer,96 C. Schwick,96 I. Segoni,96 A. Sharma,96 P. Siegrist,96 M. Simon,96 P. Sphicas,96,y D. Spiga,96 M. Spiropulu,96,r F. Stöckli,96 M. Stoye,96 P. Tropea,96 A. Tsirou,96 A. Tsyganov,96 G. I. Veres,96,m P. Vichoudis,96 M. Voutilainen,96 W. D. Zeuner,96 W. Bertl,97 K. Deiters,97 W. Erdmann,97 K. Gabathuler,97 R. Horisberger,97 Q. Ingram,97 H. C. Kaestli,97 S. König,97 D. Kotlinski,97 U. Langenegger,97 F. Meier,97 D. Renker,97 T. Rohe,97 J. Sibille,97,z A. Starodumov,97,aa P. Bortignon,98 L. Caminada,98,bb Z. Chen,98 S. Cittolin,98 G. Dissertori,98 M. Dittmar,98 J. Eugster,98 K. Freudenreich,98 C. Grab,98 A. Hervé,98 W. Hintz,98 P. Lecomte,98 W. Lustermann,98 C. Marchica,98,bb P. Martinez Ruiz del Arbol,98 P. Meridiani,98 P. Milenovic,98,cc F. Moortgat,98 P. Nef,98 F. Nessi-Tedaldi,98 L. Pape,98 F. Pauss,98 T. Punz,98 A. Rizzi,98 F. J. Ronga,98 M. Rossini,98 L. Sala,98 A. K. Sanchez,98 M.-C. Sawley,98 B. Stieger,98 L. Tauscher,98,a A. Thea,98 K. Theofilatos,98 D. Treille,98 C. Urscheler,98 R. Wallny,98,t M. Weber,98 L. Wehrli,98 J. Weng,98 E. Aguiló,99 C. Amsler,99 V. Chiochia,99 S. De Visscher,99 C. Favaro,99 M. Ivova Rikova,99 B. Millan Mejias,99 C. Regenfus,99 P. Robmann,99 A. Schmidt,99 H. Snoek,99 L. Wilke,99 Y. H. Chang,100 K. H. Chen,100 W. T. Chen,100 S. Dutta,100 A. Go,100 C. M. Kuo,100 S. W. Li,100 W. Lin,100 M. H. Liu,100 Z. K. Liu,100 Y. J. Lu,100 J. H. Wu,100 S. S. Yu,100 P. Bartalini,101 P. Chang,101 Y. H. Chang,101 Y. W. Chang,101 Y. Chao,101 K. F. Chen,101 W.-S. Hou,101 Y. Hsiung,101 K. Y. Kao,101 Y. J. Lei,101 R.-S. Lu,101 J. G. Shiu,101 Y. M. Tzeng,101 M. Wang,101 A. Adiguzel,102 M. N. Bakirci,102,dd S. Cerci,102,ee C. Dozen,102 I. Dumanoglu,102 E. Eskut,102 S. Girgis,102 G. Gokbulut,102 Y. Guler,102 E. Gurpinar,102 I. Hos,102 E. E. Kangal,102 T. Karaman,102 A. Kayis Topaksu,102 A. Nart,102 G. Onengut,102 K. Ozdemir,102 S. Ozturk,102 A. Polatoz,102 K. Sogut,102,ff B. Tali,102 H. Topakli,102,dd D. Uzun,102 L. N. Vergili,102 M. Vergili,102 C. Zorbilmez,102 I. V. Akin,103 T. Aliev,103 S. Bilmis,103 M. Deniz,103 H. Gamsizkan,103 A. M. Guler,103 K. Ocalan,103 A. Ozpineci,103 M. Serin,103 R. Sever,103 U. E. Surat,103 E. Yildirim,103 M. Zeyrek,103 M. Deliomeroglu,104 D. Demir,104,gg E. Gülmez,104 A. Halu,104 B. Isildak,104 M. Kaya,104,hh O. Kaya,104,hh S. Ozkorucuklu,104,ii N. Sonmez,104,jj L. Levchuk,105 P. Bell,106 F. Bostock,106 J. J. Brooke,106 T. L. Cheng,106 E. Clement,106 D. Cussans,106 R. Frazier,106 J. Goldstein,106 M. Grimes,106 M. Hansen,106 D. Hartley,106 G. P. Heath,106 H. F. Heath,106 B. Huckvale,106 J. Jackson,106 L. Kreczko,106 S. Metson,106 D. M. Newbold,106,kk K. Nirunpong,106 A. Poll,106 S. Senkin,106 V. J. Smith,106 S. Ward,106 L. Basso,107,ll K. W. Bell,107 A. Belyaev,107,ll C. Brew,107 R. M. Brown,107 B. Camanzi,107 D. J. A. Cockerill,107 J. A. Coughlan,107 K. Harder,107 S. Harper,107 B. W. Kennedy,107 E. Olaiya,107 D. Petyt,107 B. C. Radburn-Smith,107 C. H. Shepherd-Themistocleous,107 I. R. Tomalin,107 W. J. Womersley,107 S. D. Worm,107 R. Bainbridge,108 G. Ball,108 J. Ballin,108 R. Beuselinck,108 O. Buchmuller,108 D. Colling,108 N. Cripps,108 M. Cutajar,108 G. Davies,108 M. Della Negra,108 J. Fulcher,108 D. Futyan,108 A. Guneratne Bryer,108 G. Hall,108 Z. Hatherell,108 J. Hays,108 G. Iles,108 G. Karapostoli,108 L. Lyons,108 A.-M. Magnan,108 J. Marrouche,108 R. Nandi,108 J. Nash,108 A. Nikitenko,108,aa A. Papageorgiou,108 M. Pesaresi,108 K. Petridis,108 M. Pioppi,108,mm D. M. Raymond,108 N. Rompotis,108 A. Rose,108 M. J. Ryan,108 112004-21 92 \V. KHACHATRYAN et al. 108 PHYSICAL REVIEW D 83, 112004 (2011) 108 108 108 C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur, M. Vazquez Acosta,108 T. Virdee,108 S. Wakefield,108 D. Wardrope,108 T. Whyntie,108 M. Barrett,109 M. Chadwick,109 J. E. Cole,109 P. R. Hobson,109 A. Khan,109 P. Kyberd,109 D. Leslie,109 W. Martin,109 I. D. Reid,109 L. Teodorescu,109 K. Hatakeyama,110 T. Bose,111 E. Carrera Jarrin,111 A. Clough,111 C. Fantasia,111 A. Heister,111 J. St. John,111 P. Lawson,111 D. Lazic,111 J. Rohlf,111 D. Sperka,111 L. Sulak,111 A. Avetisyan,112 S. Bhattacharya,112 J. P. Chou,112 D. Cutts,112 A. Ferapontov,112 U. Heintz,112 S. Jabeen,112 G. Kukartsev,112 G. Landsberg,112 M. Narain,112 D. Nguyen,112 M. Segala,112 T. Speer,112 K. V. Tsang,112 M. A. Borgia,113 R. Breedon,113 M. Calderon De La Barca Sanchez,113 D. Cebra,113 S. Chauhan,113 M. Chertok,113 J. Conway,113 P. T. Cox,113 J. Dolen,113 R. Erbacher,113 E. Friis,113 W. Ko,113 A. Kopecky,113 R. Lander,113 H. Liu,113 S. Maruyama,113 T. Miceli,113 M. Nikolic,113 D. Pellett,113 J. Robles,113 S. Salur,113 T. Schwarz,113 M. Searle,113 J. Smith,113 M. Squires,113 M. Tripathi,113 R. Vasquez Sierra,113 C. Veelken,113 V. Andreev,114 K. Arisaka,114 D. Cline,114 R. Cousins,114 A. Deisher,114 J. Duris,114 S. Erhan,114 C. Farrell,114 J. Hauser,114 M. Ignatenko,114 C. Jarvis,114 C. Plager,114 G. Rakness,114 P. Schlein,114,a J. Tucker,114 V. Valuev,114 J. Babb,115 R. Clare,115 J. Ellison,115 J. W. Gary,115 F. Giordano,115 G. Hanson,115 G. Y. Jeng,115 S. C. Kao,115 F. Liu,115 H. Liu,115 A. Luthra,115 H. Nguyen,115 G. Pasztor,115,nn A. Satpathy,115 B. C. Shen,115,a R. Stringer,115 J. Sturdy,115 S. Sumowidagdo,115 R. Wilken,115 S. Wimpenny,115 W. Andrews,116 J. G. Branson,116 G. B. Cerati,116 E. Dusinberre,116 D. Evans,116 F. Golf,116 A. Holzner,116 R. Kelley,116 M. Lebourgeois,116 J. Letts,116 B. Mangano,116 J. Muelmenstaedt,116 S. Padhi,116 C. Palmer,116 G. Petrucciani,116 H. Pi,116 M. Pieri,116 R. Ranieri,116 M. Sani,116 V. Sharma,116,b S. Simon,116 Y. Tu,116 A. Vartak,116 F. Würthwein,116 A. Yagil,116 D. Barge,117 R. Bellan,117 C. Campagnari,117 M. D’Alfonso,117 T. Danielson,117 K. Flowers,117 P. Geffert,117 J. Incandela,117 C. Justus,117 P. Kalavase,117 S. A. Koay,117 D. Kovalskyi,117 V. Krutelyov,117 S. Lowette,117 N. Mccoll,117 V. Pavlunin,117 F. Rebassoo,117 J. Ribnik,117 J. Richman,117 R. Rossin,117 D. Stuart,117 W. To,117 J. R. Vlimant,117 A. Bornheim,118 J. Bunn,118 Y. Chen,118 M. Gataullin,118 D. Kcira,118 V. Litvine,118 Y. Ma,118 A. Mott,118 H. B. Newman,118 C. Rogan,118 V. Timciuc,118 P. Traczyk,118 J. Veverka,118 R. Wilkinson,118 Y. Yang,118 R. Y. Zhu,118 B. Akgun,119 R. Carroll,119 T. Ferguson,119 Y. Iiyama,119 D. W. Jang,119 S. Y. Jun,119 Y. F. Liu,119 M. Paulini,119 J. Russ,119 N. Terentyev,119 H. Vogel,119 I. Vorobiev,119 J. P. Cumalat,120 M. E. Dinardo,120 B. R. Drell,120 C. J. Edelmaier,120 W. T. Ford,120 B. Heyburn,120 E. Luiggi Lopez,120 U. Nauenberg,120 J. G. Smith,120 K. Stenson,120 K. A. Ulmer,120 S. R. Wagner,120 S. L. Zang,120 L. Agostino,121 J. Alexander,121 A. Chatterjee,121 S. Das,121 N. Eggert,121 L. J. Fields,121 L. K. Gibbons,121 B. Heltsley,121 W. Hopkins,121 A. Khukhunaishvili,121 B. Kreis,121 V. Kuznetsov,121 G. Nicolas Kaufman,121 J. R. Patterson,121 D. Puigh,121 D. Riley,121 A. Ryd,121 X. Shi,121 W. Sun,121 W. D. Teo,121 J. Thom,121 J. Thompson,121 J. Vaughan,121 Y. Weng,121 L. Winstrom,121 P. Wittich,121 A. Biselli,122 G. Cirino,122 D. Winn,122 S. Abdullin,123 M. Albrow,123 J. Anderson,123 G. Apollinari,123 M. Atac,123 J. A. Bakken,123 S. Banerjee,123 L. A. T. Bauerdick,123 A. Beretvas,123 J. Berryhill,123 P. C. Bhat,123 I. Bloch,123 F. Borcherding,123 K. Burkett,123 J. N. Butler,123 V. Chetluru,123 H. W. K. Cheung,123 F. Chlebana,123 S. Cihangir,123 M. Demarteau,123 D. P. Eartly,123 V. D. Elvira,123 S. Esen,123 I. Fisk,123 J. Freeman,123 Y. Gao,123 E. Gottschalk,123 D. Green,123 K. Gunthoti,123 O. Gutsche,123 A. Hahn,123 J. Hanlon,123 R. M. Harris,123 J. Hirschauer,123 B. Hooberman,123 E. James,123 H. Jensen,123 M. Johnson,123 U. Joshi,123 R. Khatiwada,123 B. Kilminster,123 B. Klima,123 K. Kousouris,123 S. Kunori,123 S. Kwan,123 P. Limon,123 R. Lipton,123 J. Lykken,123 K. Maeshima,123 J. M. Marraffino,123 D. Mason,123 P. McBride,123 T. McCauley,123 T. Miao,123 K. Mishra,123 S. Mrenna,123 Y. Musienko,123,oo C. Newman-Holmes,123 V. O’Dell,123 S. Popescu,123,pp R. Pordes,123 O. Prokofyev,123 N. Saoulidou,123 E. Sexton-Kennedy,123 S. Sharma,123 A. Soha,123 W. J. Spalding,123 L. Spiegel,123 P. Tan,123 L. Taylor,123 S. Tkaczyk,123 L. Uplegger,123 E. W. Vaandering,123 R. Vidal,123 J. Whitmore,123 W. Wu,123 F. Yang,123 F. Yumiceva,123 J. C. Yun,123 D. Acosta,124 P. Avery,124 D. Bourilkov,124 M. Chen,124 G. P. Di Giovanni,124 D. Dobur,124 A. Drozdetskiy,124 R. D. Field,124 M. Fisher,124 Y. Fu,124 I. K. Furic,124 J. Gartner,124 S. Goldberg,124 B. Kim,124 S. Klimenko,124 J. Konigsberg,124 A. Korytov,124 A. Kropivnitskaya,124 T. Kypreos,124 K. Matchev,124 G. Mitselmakher,124 L. Muniz,124 Y. Pakhotin,124 C. Prescott,124 R. Remington,124 M. Schmitt,124 B. Scurlock,124 P. Sellers,124 N. Skhirtladze,124 D. Wang,124 J. Yelton,124 M. Zakaria,124 C. Ceron,125 V. Gaultney,125 L. Kramer,125 L. M. Lebolo,125 S. Linn,125 P. Markowitz,125 G. Martinez,125 J. L. Rodriguez,125 T. Adams,126 A. Askew,126 D. Bandurin,126 J. Bochenek,126 J. Chen,126 B. Diamond,126 S. V. Gleyzer,126 J. Haas,126 S. Hagopian,126 V. Hagopian,126 M. Jenkins,126 K. F. Johnson,126 H. Prosper,126 S. Sekmen,126 V. Veeraraghavan,126 M. M. Baarmand,127 B. Dorney,127 S. Guragain,127 M. Hohlmann,127 H. Kalakhety,127 R. Ralich,127 I. Vodopiyanov,127 M. R. Adams,128 I. M. Anghel,128 L. Apanasevich,128 Y. Bai,128 V. E. Bazterra,128 R. R. Betts,128 112004-22 108 UPSILON PRODUCTION CROSS SECTION IN pp . . . 128 128 PHYSICAL REVIEW D 83, 112004 (2011) 128 J. Callner, R. Cavanaugh, C. Dragoiu, E. J. Garcia-Solis, C. E. Gerber,128 D. J. Hofman,128 S. Khalatyan,128 F. Lacroix,128 C. O’Brien,128 C. Silvestre,128 A. Smoron,128 D. Strom,128 N. Varelas,128 U. Akgun,129 E. A. Albayrak,129 B. Bilki,129 K. Cankocak,129 W. Clarida,129 F. Duru,129 C. K. Lae,129 E. McCliment,129 J.-P. Merlo,129 H. Mermerkaya,129 A. Mestvirishvili,129 A. Moeller,129 J. Nachtman,129 C. R. Newsom,129 E. Norbeck,129 J. Olson,129 Y. Onel,129 F. Ozok,129 S. Sen,129 J. Wetzel,129 T. Yetkin,129 K. Yi,129 B. A. Barnett,130 B. Blumenfeld,130 A. Bonato,130 C. Eskew,130 D. Fehling,130 G. Giurgiu,130 A. V. Gritsan,130 Z. J. Guo,130 G. Hu,130 P. Maksimovic,130 S. Rappoccio,130 M. Swartz,130 N. V. Tran,130 A. Whitbeck,130 P. Baringer,131 A. Bean,131 G. Benelli,131 O. Grachov,131 M. Murray,131 D. Noonan,131 V. Radicci,131 S. Sanders,131 J. S. Wood,131 V. Zhukova,131 T. Bolton,132 I. Chakaberia,132 A. Ivanov,132 M. Makouski,132 Y. Maravin,132 S. Shrestha,132 I. Svintradze,132 Z. Wan,132 J. Gronberg,133 D. Lange,133 D. Wright,133 A. Baden,134 M. Boutemeur,134 S. C. Eno,134 D. Ferencek,134 J. A. Gomez,134 N. J. Hadley,134 R. G. Kellogg,134 M. Kirn,134 Y. Lu,134 A. C. Mignerey,134 K. Rossato,134 P. Rumerio,134 F. Santanastasio,134 A. Skuja,134 J. Temple,134 M. B. Tonjes,134 S. C. Tonwar,134 E. Twedt,134 B. Alver,135 G. Bauer,135 J. Bendavid,135 W. Busza,135 E. Butz,135 I. A. Cali,135 M. Chan,135 V. Dutta,135 P. Everaerts,135 G. Gomez Ceballos,135 M. Goncharov,135 K. A. Hahn,135 P. Harris,135 Y. Kim,135 M. Klute,135 Y.-J. Lee,135 W. Li,135 C. Loizides,135 P. D. Luckey,135 T. Ma,135 S. Nahn,135 C. Paus,135 D. Ralph,135 C. Roland,135 G. Roland,135 M. Rudolph,135 G. S. F. Stephans,135 K. Sumorok,135 K. Sung,135 E. A. Wenger,135 S. Xie,135 M. Yang,135 Y. Yilmaz,135 A. S. Yoon,135 M. Zanetti,135 P. Cole,136 S. I. Cooper,136 P. Cushman,136 B. Dahmes,136 A. De Benedetti,136 P. R. Dudero,136 G. Franzoni,136 J. Haupt,136 K. Klapoetke,136 Y. Kubota,136 J. Mans,136 V. Rekovic,136 R. Rusack,136 M. Sasseville,136 A. Singovsky,136 L. M. Cremaldi,137 R. Godang,137 R. Kroeger,137 L. Perera,137 R. Rahmat,137 D. A. Sanders,137 D. Summers,137 K. Bloom,138 S. Bose,138 J. Butt,138 D. R. Claes,138 A. Dominguez,138 M. Eads,138 J. Keller,138 T. Kelly,138 I. Kravchenko,138 J. Lazo-Flores,138 C. Lundstedt,138 H. Malbouisson,138 S. Malik,138 G. R. Snow,138 U. Baur,139 A. Godshalk,139 I. Iashvili,139 A. Kharchilava,139 A. Kumar,139 S. P. Shipkowski,139 K. Smith,139 G. Alverson,140 E. Barberis,140 D. Baumgartel,140 O. Boeriu,140 M. Chasco,140 K. Kaadze,140 S. Reucroft,140 J. Swain,140 D. Wood,140 J. Zhang,140 A. Anastassov,141 A. Kubik,141 N. Odell,141 R. A. Ofierzynski,141 B. Pollack,141 A. Pozdnyakov,141 M. Schmitt,141 S. Stoynev,141 M. Velasco,141 S. Won,141 L. Antonelli,142 D. Berry,142 M. Hildreth,142 C. Jessop,142 D. J. Karmgard,142 J. Kolb,142 T. Kolberg,142 K. Lannon,142 W. Luo,142 S. Lynch,142 N. Marinelli,142 D. M. Morse,142 T. Pearson,142 R. Ruchti,142 J. Slaunwhite,142 N. Valls,142 J. Warchol,142 M. Wayne,142 J. Ziegler,142 B. Bylsma,143 L. S. Durkin,143 J. Gu,143 C. Hill,143 P. Killewald,143 K. Kotov,143 T. Y. Ling,143 M. Rodenburg,143 G. Williams,143 N. Adam,144 E. Berry,144 P. Elmer,144 D. Gerbaudo,144 V. Halyo,144 P. Hebda,144 A. Hunt,144 J. Jones,144 E. Laird,144 D. Lopes Pegna,144 D. Marlow,144 T. Medvedeva,144 M. Mooney,144 J. Olsen,144 P. Piroué,144 X. Quan,144 H. Saka,144 D. Stickland,144 C. Tully,144 J. S. Werner,144 A. Zuranski,144 J. G. Acosta,145 X. T. Huang,145 A. Lopez,145 H. Mendez,145 S. Oliveros,145 J. E. Ramirez Vargas,145 A. Zatserklyaniy,145 E. Alagoz,146 V. E. Barnes,146 G. Bolla,146 L. Borrello,146 D. Bortoletto,146 A. Everett,146 A. F. Garfinkel,146 Z. Gecse,146 L. Gutay,146 Z. Hu,146 M. Jones,146 O. Koybasi,146 A. T. Laasanen,146 N. Leonardo,146 C. Liu,146 V. Maroussov,146 P. Merkel,146 D. H. Miller,146 N. Neumeister,146 K. Potamianos,146 I. Shipsey,146 D. Silvers,146 A. Svyatkovskiy,146 H. D. Yoo,146 J. Zablocki,146 Y. Zheng,146 P. Jindal,147 N. Parashar,147 C. Boulahouache,148 V. Cuplov,148 K. M. Ecklund,148 F. J. M. Geurts,148 J. H. Liu,148 J. Morales,148 B. P. Padley,148 R. Redjimi,148 J. Roberts,148 J. Zabel,148 B. Betchart,149 A. Bodek,149 Y. S. Chung,149 R. Covarelli,149 P. de Barbaro,149 R. Demina,149 Y. Eshaq,149 H. Flacher,149 A. Garcia-Bellido,149 P. Goldenzweig,149 Y. Gotra,149 J. Han,149 A. Harel,149 D. C. Miner,149 D. Orbaker,149 G. Petrillo,149 D. Vishnevskiy,149 M. Zielinski,149 A. Bhatti,150 L. Demortier,150 K. Goulianos,150 G. Lungu,150 C. Mesropian,150 M. Yan,150 O. Atramentov,151 A. Barker,151 D. Duggan,151 Y. Gershtein,151 R. Gray,151 E. Halkiadakis,151 D. Hidas,151 D. Hits,151 A. Lath,151 S. Panwalkar,151 R. Patel,151 A. Richards,151 K. Rose,151 S. Schnetzer,151 S. Somalwar,151 R. Stone,151 S. Thomas,151 G. Cerizza,152 M. Hollingsworth,152 S. Spanier,152 Z. C. Yang,152 A. York,152 J. Asaadi,153 R. Eusebi,153 J. Gilmore,153 A. Gurrola,153 T. Kamon,153 V. Khotilovich,153 R. Montalvo,153 C. N. Nguyen,153 I. Osipenkov,153 J. Pivarski,153 A. Safonov,153 S. Sengupta,153 A. Tatarinov,153 D. Toback,153 M. Weinberger,153 N. Akchurin,154 C. Bardak,154 J. Damgov,154 C. Jeong,154 K. Kovitanggoon,154 S. W. Lee,154 P. Mane,154 Y. Roh,154 A. Sill,154 I. Volobouev,154 R. Wigmans,154 E. Yazgan,154 E. Appelt,155 E. Brownson,155 D. Engh,155 C. Florez,155 W. Gabella,155 W. Johns,155 P. Kurt,155 C. Maguire,155 A. Melo,155 P. Sheldon,155 J. Velkovska,155 M. W. Arenton,156 M. Balazs,156 S. Boutle,156 M. Buehler,156 S. Conetti,156 B. Cox,156 B. Francis,156 R. Hirosky,156 A. Ledovskoy,156 C. Lin,156 C. Neu,156 112004-23 128 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) 156 157 157 157 R. Yohay, S. Gollapinni, R. Harr, P. E. Karchin, P. Lamichhane,157 M. Mattson,157 C. Milstène,157 A. Sakharov,157 M. Anderson,158 M. Bachtis,158 J. N. Bellinger,158 D. Carlsmith,158 S. Dasu,158 J. Efron,158 L. Gray,158 K. S. Grogg,158 M. Grothe,158 R. Hall-Wilton,158,b M. Herndon,158 P. Klabbers,158 J. Klukas,158 A. Lanaro,158 C. Lazaridis,158 J. Leonard,158 D. Lomidze,158 R. Loveless,158 A. Mohapatra,158 D. Reeder,158 I. Ross,158 A. Savin,158 W. H. Smith,158 J. Swanson,158 and M. Weinberg158 (CMS Collaboration) 1 Yerevan Physics Institute, Yerevan, Armenia Institut für Hochenergiephysik der OeAW, Wien, Austria 3 National Centre for Particle and High Energy Physics, Minsk, Belarus 4 Universiteit Antwerpen, Antwerpen, Belgium 5 Vrije Universiteit Brussel, Brussel, Belgium 6 Université Libre de Bruxelles, Bruxelles, Belgium 7 Ghent University, Ghent, Belgium 8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9 Université de Mons, Mons, Belgium 10 Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12 Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil 13 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14 University of Sofia, Sofia, Bulgaria 15 Institute of High Energy Physics, Beijing, China 16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17 Universidad de Los Andes, Bogota, Colombia 18 Technical University of Split, Split, Croatia 19 University of Split, Split, Croatia 20 Institute Rudjer Boskovic, Zagreb, Croatia 21 University of Cyprus, Nicosia, Cyprus 22 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt 23 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 24 Department of Physics, University of Helsinki, Helsinki, Finland 25 Helsinki Institute of Physics, Helsinki, Finland 26 Lappeenranta University of Technology, Lappeenranta, Finland 27 Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 28 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France 29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 31 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33 E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37 Deutsches Elektronen-Synchrotron, Hamburg, Germany 38 University of Hamburg, Hamburg, Germany 39 Institut für Experimentelle Kernphysik, Karlsruhe, Germany 40 Institute of Nuclear Physics Demokritos, Aghia Paraskevi, Greece 41 University of Athens, Athens, Greece 42 University of Ioánnina, Ioánnina, Greece 43 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44 Institute of Nuclear Research ATOMKI, Debrecen, Hungary 45 University of Debrecen, Debrecen, Hungary 46 Panjab University, Chandigarh, India 47 University of Delhi, Delhi, India 48 Bhabha Atomic Research Centre, Mumbai, India 49 Tata Institute of Fundamental Research - EHEP, Mumbai, India 2 112004-24 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) 50 Tata Institute of Fundamental Research - HECR, Mumbai, India Institute for Research and Fundamental Sciences (IPM), Tehran, Iran 52a INFN Sezione di Bari, Bari, Italy 52b Università di Bari, Bari, Italy 52c Politecnico di Bari, Bari, Italy 53a INFN Sezione di Bologna, Bologna, Italy 53b Università di Bologna, Bologna, Italy 54a INFN Sezione di Catania, Catania, Italy 54b Università di Catania, Catania, Italy 55a INFN Sezione di Firenze, Firenze, Italy 55b Università di Firenze, Firenze, Italy 56 INFN Laboratori Nazionali di Frascati, Frascati, Italy 57 INFN Sezione di Genova, Genova, Italy 58a INFN Sezione di Milano-Bicocca, Milano, Italy 58b Università di Milano-Bicocca, Milano, Italy 59a INFN Sezione di Napoli, Napoli, Italy 59b Università di Napoli ‘‘Federico II’’, Napoli, Italy 60a INFN Sezione di Padova, Padova, Italy 60b Università di Padova, Padova, Italy 60c Università di Trento (Trento), Padova, Italy 61a INFN Sezione di Pavia, Pavia, Italy 61b Università di Pavia, Pavia, Italy 62a INFN Sezione di Perugia, Perugia, Italy 62b Università di Perugia, Perugia, Italy 63a INFN Sezione di Pisa, Pisa, Italy 63b Università di Pisa, Pisa, Italy 63c Scuola Normale Superiore di Pisa, Pisa, Italy 64a INFN Sezione di Roma, Roma, Italy 64b Università di Roma La Sapienza, Roma, Italy 65a INFN Sezione di Torino, Torino, Italy 65b Università di Torino, Torino, Italy 65c Università del Piemonte Orientale (Novara) 66a INFN Sezione di Trieste, Trieste, Italy 66b Università di Trieste, Trieste, Italy 67 Kangwon National University, Chunchon, Korea 68 Kyungpook National University, Daegu, Korea 69 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 70 Korea University, Seoul, Korea 71 University of Seoul, Seoul, Korea 72 Sungkyunkwan University, Suwon, Korea 73 Vilnius University, Vilnius, Lithuania 74 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 75 Universidad Iberoamericana, Mexico City, Mexico 76 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 77 Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, Mexico 78 University of Auckland, Auckland, New Zealand 79 University of Canterbury, Christchurch, New Zealand 80 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 81 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 82 Soltan Institute for Nuclear Studies, Warsaw, Poland 83 Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal 84 Joint Institute for Nuclear Research, Dubna, Russia 85 Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 86 Institute for Nuclear Research, Moscow, Russia 87 Institute for Theoretical and Experimental Physics, Moscow, Russia 88 Moscow State University, Moscow, Russia 89 P. N. Lebedev Physical Institute, Moscow, Russia 90 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 91 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 92 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 93 Universidad Autónoma de Madrid, Madrid, Spain 51 112004-25 \V. KHACHATRYAN et al. PHYSICAL REVIEW D 83, 112004 (2011) 94 Universidad de Oviedo, Oviedo, Spain Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 96 CERN, European Organization for Nuclear Research, Geneva, Switzerland 97 Paul Scherrer Institut, Villigen, Switzerland 98 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 99 Universität Zürich, Zurich, Switzerland 100 National Central University, Chung-Li, Taiwan 101 National Taiwan University (NTU), Taipei, Taiwan 102 Cukurova University, Adana, Turkey 103 Middle East Technical University, Physics Department, Ankara, Turkey 104 Bogazici University, Istanbul, Turkey 105 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 106 University of Bristol, Bristol, United Kingdom 107 Rutherford Appleton Laboratory, Didcot, United Kingdom 108 Imperial College, London, United Kingdom 109 Brunel University, Uxbridge, United Kingdom 110 Baylor University, Waco, USA 111 Boston University, Boston, USA 112 Brown University, Providence, USA 113 University of California, Davis, Davis, USA 114 University of California, Los Angeles, Los Angeles, USA 115 University of California, Riverside, Riverside, USA 116 University of California, San Diego, La Jolla, USA 117 University of California, Santa Barbara, Santa Barbara, USA 118 California Institute of Technology, Pasadena, USA 119 Carnegie Mellon University, Pittsburgh, USA 120 University of Colorado at Boulder, Boulder, USA 121 Cornell University, Ithaca, USA 122 Fairfield University, Fairfield, USA 123 Fermi National Accelerator Laboratory, Batavia, USA 124 University of Florida, Gainesville, USA 125 Florida International University, Miami, USA 126 Florida State University, Tallahassee, USA 127 Florida Institute of Technology, Melbourne, USA 128 University of Illinois at Chicago (UIC), Chicago, USA 129 The University of Iowa, Iowa City, USA 130 Johns Hopkins University, Baltimore, USA 131 The University of Kansas, Lawrence, USA 132 Kansas State University, Manhattan, USA 133 Lawrence Livermore National Laboratory, Livermore, USA 134 University of Maryland, College Park, USA 135 Massachusetts Institute of Technology, Cambridge, USA 136 University of Minnesota, Minneapolis, USA 137 University of Mississippi, University, USA 138 University of Nebraska-Lincoln, Lincoln, USA 139 State University of New York at Buffalo, Buffalo, USA 140 Northeastern University, Boston, USA 141 Northwestern University, Evanston, USA 142 University of Notre Dame, Notre Dame, USA 143 The Ohio State University, Columbus, USA 144 Princeton University, Princeton, USA 145 University of Puerto Rico, Mayaguez, USA 146 Purdue University, West Lafayette, USA 147 Purdue University Calumet, Hammond, USA 148 Rice University, Houston, USA 149 University of Rochester, Rochester, USA 150 The Rockefeller University, New York, USA 151 Rutgers, the State University of New Jersey, Piscataway, USA 152 University of Tennessee, Knoxville, USA 153 Texas A&M University, College Station, USA 154 Texas Tech University, Lubbock, USA 95 112004-26 UPSILON PRODUCTION CROSS SECTION IN pp . . . PHYSICAL REVIEW D 83, 112004 (2011) 155 Vanderbilt University, Nashville, USA University of Virginia, Charlottesville, USA 157 Wayne State University, Detroit, USA 158 University of Wisconsin, Madison, USA 156 a Deceased. Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland. c Also at Universidade Federal do ABC, Santo Andre, Brazil. d Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. e Also at Suez Canal University, Suez, Egypt. f Also at Fayoum University, El-Fayoum, Egypt. g Also at Soltan Institute for Nuclear Studies, Warsaw, Poland. h Also at Massachusetts Institute of Technology, Cambridge, USA. i Also at Université de Haute-Alsace, Mulhouse, France. j Also at Brandenburg University of Technology, Cottbus, Germany. k Also at Moscow State University, Moscow, Russia. l Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. m Also at Eötvös Loránd University, Budapest, Hungary. n Also at Tata Institute of Fundamental Research - HECR, Mumbai, India. o Also at University of Visva-Bharati, Santiniketan, India. p Also at Facoltà Ingegneria Università di Roma La Sapienza, Roma, Italy. q Also at Università della Basilicata, Potenza, Italy. r Also at California Institute of Technology, Pasadena, USA. s Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia. t Also at University of California, Los Angeles, Los Angeles, USA. u Also at University of Florida, Gainesville, USA. v Also at Université de Genève, Geneva, Switzerland. w Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy. x Also at INFN Sezione di Roma, Università di Roma La Sapienza, Roma, Italy. y Also at University of Athens, Athens, Greece. z Also at The University of Kansas, Lawrence, USA. aa Also at Institute for Theoretical and Experimental Physics, Moscow, Russia. bb Also at Paul Scherrer Institut, Villigen, Switzerland. cc Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. dd Also at Gaziosmanpasa University, Tokat, Turkey. ee Also at Adiyaman University, Adiyaman, Turkey. ff Also at Mersin University, Mersin, Turkey. gg Also at Izmir Institute of Technology, Izmir, Turkey. hh Also at Kafkas University, Kars, Turkey. ii Also at Suleyman Demirel University, Isparta, Turkey. jj Also at Ege University, Izmir, Turkey. kk Also at Rutherford Appleton Laboratory, Didcot, United Kingdom. ll Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. mm Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy. nn Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. oo Also at Institute for Nuclear Research, Moscow, Russia. pp Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania. b 112004-27