Skip to main content
wilco ligterink
  • Netherlands

wilco ligterink

Mitogen-activated protein (MAP) kinases are universal transducers of extracellular signals in all eukaryotes. Multiple MAPK pathways exist in each organism that are differentially activated by a variety of stimuli including chemical as... more
Mitogen-activated protein (MAP) kinases are universal transducers of extracellular signals in all eukaryotes. Multiple MAPK pathways exist in each organism that are differentially activated by a variety of stimuli including chemical as well as physical factors. We have characterized the stress-activated MAP kinase (SAMK) pathway in plants that is involved in mediating touch, drought, cold, and wounding. The SAMK pathway is activated by a posttranslational mechanism, but inactivation requires de novo expression of gene(s). One of these genes isMP2C encoding a protein phosphatase type 2C that is able to inactivate the SAMK pathway.MP2C expression itself is regulated by the SAMK pathway and constitutes a negative feedback mechanism for resetting the pathway.
Plants recognize microbial pathogens by discriminating pathogen-associated molecular patterns from self-structures. We study the non-host disease resistance of soybean (Glycine max L.) to the oomycete, Phytophthora sojae. Soybean senses a... more
Plants recognize microbial pathogens by discriminating pathogen-associated molecular patterns from self-structures. We study the non-host disease resistance of soybean (Glycine max L.) to the oomycete, Phytophthora sojae. Soybean senses a specific molecular pattern consisting of a branched heptaglucoside that is present in the oomycetal cell walls. Recognition of this elicitor may be achieved through a β-glucan-binding protein, which forms part of a proposed receptor complex. Subsequently, soybean mounts a complex defense response, which includes the increase of the cytosolic calcium concentration, the production of reactive oxygen species, and the activation of genes responsible for the synthesis of phytoalexins. We now report the identification of two mitogen-activated protein kinases (MAPKs) and one MAPK kinase (MAPKK) that may function as signaling elements in triggering the resistance response. The use of specific antisera enabled the identification of GmMPKs 3 and 6 whose activity is enhanced within the signaling pathway leading to defense reactions. Elicitor specificity of MAPK activation as well as the sensitivity against inhibitors suggested these kinases as part of the β-glucan signal transduction pathway. An upstream GmMKK1 was identified based on sequence similarity to other plant MAPKKs and its interaction with the MAPKs was analyzed. Recombinant GmMKK1 interacted predominantly with GmMPK6, with concomitant phosphorylation of the MAPK protein. Moreover, a preferential physical interaction between GmMKK1 and GmMPK6 was demonstrated in yeast. These results suggest a role of a MAPK cascade in mediating β-glucan signal transduction in soybean, similar to other triggers that activate MAPKs during innate immune responses in plants.
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different extracellular stimuli and are... more
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different extracellular stimuli and are implicated in a wide variety of biological processes. In plants, there exists a large number of highly conserved MAPK genes. The presently available evidence indicates that some of these MAPKs play a role in the signal transduction of abiotic stress, pathogens, plant hormones, and cell cycle cues.
Research Interests:
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different extracellular stimuli and are... more
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different extracellular stimuli and are implicated in a wide variety of biological processes. In plants there is evidence for MAPKs playing a role in the signaling of abiotic stresses, pathogens and plant hormones. The large number and divergence of plant MAPKs indicates that this ancient mechanism of bioinformatics is extensively used in plants and may provide a new molecular handle on old questions.
Mitogen-activated protein kinases (MAPKs) are important signaling tools in all eukaryotes, and function in mediating an enormous variety of external signals to appropriate cellular responses. MAPK pathways have been studied extensively in... more
Mitogen-activated protein kinases (MAPKs) are important signaling tools in all eukaryotes, and function in mediating an enormous variety of external signals to appropriate cellular responses. MAPK pathways have been studied extensively in yeast and mammalian cells, and a large body of knowledge on their functioning has accumulated, which is summarized briefly. Plant MAPK pathways have attracted increasing interest, resulting in the isolation of a large number of different components of MAPK cascades. Studies on the functions of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, as well as in the signaling of most plant hormones and in developmental processes. Finally, the involvement of various plant phosphatases in the inactivation of MAPKs is discussed.
The heterotrimeric G-protein pathway is a ubiquitous eukaryotic signalling module that is known to regulate growth and differentiation in many plant pathogens. We previously identified Pigpa1, a gene encoding a G-protein α subunit from... more
The heterotrimeric G-protein pathway is a ubiquitous eukaryotic signalling module that is known to regulate growth and differentiation in many plant pathogens. We previously identified Pigpa1, a gene encoding a G-protein α subunit from the potato late blight pathogen Phytophthora infestans. P. infestans belongs to the class oomycetes, a group of organisms in which signal transduction processes have not yet been studied at the molecular level. To elucidate the function of Pigpa1, PiGPA1-deficient mutants were obtained by homology-dependent gene silencing. The Pigpa1-silenced mutants produced zoospores that turned six to eight times more frequently, causing them to swim only short distances compared with wild type. Attraction to the surface, a phenomenon known as negative geotaxis, was impaired in the mutant zoospores, as well as autoaggregation and chemotaxis towards glutamic and aspartic acid. Zoospore production was reduced by 20–45% in different Pigpa1-silenced mutants. Transformants expressing constitutively active forms of PiGPA1, containing amino acid substitutions (R177H and Q203L), showed no obvious phenotypic differences from the wild-type strain. Infection efficiencies on potato leaves ranged from 3% to 14% in the Pigpa1-silenced mutants, compared with 77% in wild type, showing that virulence is severely impaired. The results prove that PiGPA1 is crucial for zoospore motility and for pathogenicity in an important oomycete plant pathogen.
Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell... more
Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell cycle and cytoskeleton relative genes (ABI3, CDC2-like and ACT2) alone could not explain the germination behaviour of M. ovata seeds in relation to drying damage. Irrespective of their initial water content, the seeds performed in the same way during the initial period of germination and the deleterious effects of desiccation only occurred in later stages. Expression of PKABA1, sHSP17.5 and 2-Cys-PRX did not show a relationship with desiccation. However, the expression patterns of PKABA1 and sHSP17.5 suggested the participation of these genes in protective mechanisms during the imbibition of M. ovata seeds..
... Correspondence Email: Ronny.Joosen@wur.nl Seed Science Research, page 1 of 10 ... New Phytologist 179, 33–54. Holdsworth, MJ, Finch-Savage, WE, Grappin, P. and Job, D. (2008b) Post-genomics dissection of seed dor-mancy and... more
... Correspondence Email: Ronny.Joosen@wur.nl Seed Science Research, page 1 of 10 ... New Phytologist 179, 33–54. Holdsworth, MJ, Finch-Savage, WE, Grappin, P. and Job, D. (2008b) Post-genomics dissection of seed dor-mancy and germination. ...
Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the... more
Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve-fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. germinator is a low-cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.