Skip to main content
    Dielectric properties of polyurethanes containing poly(propylene oxide) (PO) and poly(ethylene oxide) (EO) units are discussed, along with the results of direct current (DC) measurements and broadband electrical spectroscopy (BES)... more
    Dielectric properties of polyurethanes containing poly(propylene oxide) (PO) and poly(ethylene oxide) (EO) units are discussed, along with the results of direct current (DC) measurements and broadband electrical spectroscopy (BES) studies. The dielectric properties of polyether-containing polyurethanes (PUs) are compared to those of PUs containing 1000 ppm of ionic liquids (ILs) as antistatic agents. The effects of the chemical environment of these ILs, including anion-fixed polymers (PU-AF), cation-fixed polymers (PU-CF), and a simple mixture of IL with the PUs (PU-IL), are compared and discussed on the basis of ion mobility. DC measurements suggest that the charge current is attributed not only to the electrode polarization but also to continuous dielectric relaxation. BES studies elucidate that both fast and slow relaxations are taking place in EO-rich domains in pristine PU and PU-AF. The activation energies of the slow relaxation and of the ionic conductivity are similar, suggesting that the ionic conductivity of these materials is attributed to the ion exchange reaction in EO/ion complexes. In contrast, only fast relaxations are observed in the domains mostly comprised of ion-depleted EO in the PUs containing "free" anions, i.e., PU-CF and PU-IL. This suggests that [Tf2N](-) ligands are weakly interacting with the EO chains and contribute effectively to the ion conduction. Thus, enhanced ionic conductivity is observed in PU-CF and PU-IL, yielding sufficient antistatic effects. Taking into account its long shelf life, arising from the lack of IL bleed-out, PU-CF is concluded to be the most promising candidate.
    Hyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray... more
    Hyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray microanalysis, and solvent absorption. The hyper-cross-linking of the parent resin was accomplished by Friedel-Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.0 nm in diameter) and mesopores (2.2 nm). The chloromethyl groups that did not react in the hyper-cross-linking step were transformed into methylmercaptan groups and the latter were then converted into sulfonic groups by oxidation with hydrogen peroxide. By this procedure the extensive permanent porosity of the parent unsulfonated hyper-cross-linked polymer (HGT) was retained by the sulfonated polymer (HGTS). The final exchange capacity of HGTS was determined to be 0.36 mmol g(-1). HGTS was easily metalated with Pd(II) and the subsequent reduction of the metal centers with either aqueous sodium borohydride, formaldehyde, or dihydrogen produced three Pd(0)/HGTS nanocomposites. The metal nanoparticles had diameters in the 1-6 nm range for all the nanocomposites, as determined by TEM, but with somewhat different distributions. When formaldehyde was used, more than 90% of the nanoparticles were less than 3 nm and their radial distribution throughout the polymer beads was quite homogeneous. These findings show that with this reducing agent the metal nanoparticles are generated within the pore system of the polymer matrix, hence their size is controlled by the dimensions of the pores of the polymeric support.
    ABSTRACT
    In this report, the electrical performance at T > 100 degrees C and low relative humidity of proton-conducting Nafion-based membranes was improved by preparing new... more
    In this report, the electrical performance at T > 100 degrees C and low relative humidity of proton-conducting Nafion-based membranes was improved by preparing new materials based on Nafion 117 (N117) neutralized with triethylammonium (TEA(+)) and doped with the ionic liquid (IL) trifluoromethanesulfonate of triethylammonium (TEA-TF). In particular, a new two-step protocol for the preparation of [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] is proposed. [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] membrane is composed of ca. 30 wt % of TEA-TF. The structure of the different nanophases composing the materials and their interactions were investigated by FT-IR ATR and micro-Raman spectroscopy. The thermal stability, water uptake, and mechanical properties of the membranes were studied by thermogravimetric analysis and dynamic mechanical analysis measurements. With respect to pristine N117, the thermal and mechanical properties of the proposed materials were improved. The electric response of [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] was studied by broad band dielectric spectroscopy in the frequency range from 10(-2) Hz to 10 MHz and for temperatures between 5 and 155 degrees C. In comparison to the N117 reference, the following was observed: (a) the stability range of conductivity (SRC) of the [N117(x-)(TEA(+))(x)] membrane increases up to 155 degrees C, while its sigma(DC) at T = 100 degrees C is lowered by ca. 2 orders of magnitude; (b) the SRC of [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] is similar to that of [N117(x-)(TEA(+))(x)], while the sigma(DC) at 145 degrees C decreases in the order 7.3 x 10(-3) > 6.1 x 10(-3) > 9.7 x 10(-4) S x cm(-1) for [N117(x-)(TEA(+))(x)/(TEA-TF)(y)], N117, and [N117(x-)(TEA(+))(x)] membranes, respectively. In conclusion, the lower water uptake, the improved thermal and mechanical stability, and the good conductivity make [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] a promising membrane to improve for application in proton exchange membrane fuel cells operating under anhydrous conditions at T > 100 degrees C.
    ABSTRACT
    In this work the deposition of thin films of polyimide precursor monomers through glow discharge-induced sublimation (GDS) has been performed. The selected monomers were 2,4,6-trimethyl m-phenylenediamine (TMPD), 3,3′-diaminodiphenyl... more
    In this work the deposition of thin films of polyimide precursor monomers through glow discharge-induced sublimation (GDS) has been performed. The selected monomers were 2,4,6-trimethyl m-phenylenediamine (TMPD), 3,3′-diaminodiphenyl sulfone (DDS), 4,4′-hexafluoroisopropylidene dianiline (6FDAm), 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA) and 4,4′-hexafluoroisopropylidene diphthalic anhydride (6FDA).The surface of the deposited films has been studied by X-ray photoelectron spectroscopy (XPS) in order to attain a
    Au-polyimide nanocomposites have been synthesized by implanting Au+ ions in pyromellitic dianhydride-4,4′ oxydianiline polyimide films prepared by glow discharge vapor deposition polymerisation (GDVDP). A structural and optical... more
    Au-polyimide nanocomposites have been synthesized by implanting Au+ ions in pyromellitic dianhydride-4,4′ oxydianiline polyimide films prepared by glow discharge vapor deposition polymerisation (GDVDP). A structural and optical characterization shows that Au clusters grow only implanting 5×1016Au+/cm2. This sample class shows interesting dynamic optical absorption sensing responses towards methanol and ethanol vapors in the spectral range corresponding to the surface plasmon
    ABSTRACT
    ABSTRACT
    ABSTRACT
    Time-resolved EPR spectra of UV-irradiated Nafion reveal the formation of spin-polarized excited triplet states and allow the detection of photoinduced triplet-triplet energy transfer processes through hydrogen bonds between water and... more
    Time-resolved EPR spectra of UV-irradiated Nafion reveal the formation of spin-polarized excited triplet states and allow the detection of photoinduced triplet-triplet energy transfer processes through hydrogen bonds between water and sulfonic acid groups.
    Hydrogen adsorption on the InP (001)-(2×1) reconstruction has been characterized by vibrational spectroscopy and ab initio calculations with density functional theory. The (2×1) surface is covered with a complete layer of phosphorus... more
    Hydrogen adsorption on the InP (001)-(2×1) reconstruction has been characterized by vibrational spectroscopy and ab initio calculations with density functional theory. The (2×1) surface is covered with a complete layer of phosphorus dimers. The clean and hydrogen-terminated dimers have been modeled by In5P4Hx clusters with the proper number of covalent and dative bonds to accurately represent the surface of interest.
    ABSTRACT This report describes the preparation of two Pd-based carbon nitride electrocatalysts for the oxygen reduction reaction (ORR) for application in polymer electrolyte membrane fuel cells (PEMFCs). The electrocatalysts consist of... more
    ABSTRACT This report describes the preparation of two Pd-based carbon nitride electrocatalysts for the oxygen reduction reaction (ORR) for application in polymer electrolyte membrane fuel cells (PEMFCs). The electrocatalysts consist of multi-metallic active sites supported on a graphite-like carbon nitride (CN) matrix with a N content exceeding 13. wt%. The electrochemical performance is investigated by cyclic voltammetry with the thin-film rotating disk electrode method (CV-TF-RDE) and evaluated in a single membrane electrode assembly (MEA) PEMFC. The correlation of the structural information to functional properties allows to propose a reaction mechanism and to identify the most desirable features to achieve in a CN electrocatalyst in order to obtain desired electrochemical performance in catalysis of ORR. It is established also that the CN support improves the tolerance towards the catalyst corrosion under oxidizing conditions and thus improves the catalyst durability. The stoichiometry and the morphology of Pd-based CN electrocatalysts play a crucial role in the modulation of the tolerance towards common ORR poisons such as chlorine anions and methanol. Finally, the performance of the Pd-based CN electrocatalysts in a single MEA PEMFC proved promising. © 2011 Elsevier B.V.
    A critical roadblock toward practical Mg-based energy storage technologies is the lack of reversible electrolytes that are safe and electrochemically stable. Here, we report on high-performance electrolytes based on... more
    A critical roadblock toward practical Mg-based energy storage technologies is the lack of reversible electrolytes that are safe and electrochemically stable. Here, we report on high-performance electrolytes based on 1-ethyl-3-methylimidazolium chloride (EMImCl) doped with AlCl3 and highly amorphous δ-MgCl2 . The phase diagram of the electrolytes reveals the presence of four thermal transitions that strongly depend on salt content. High-level density functional theory (DFT)-based electronic structure calculations substantiate the structural and vibrational assignment of the coordination complexes. A 3D chloride-concatenated dynamic network model accounts for the outstanding redox behaviour and the electric and magnetic properties, providing insight into the conduction mechanism of the electrolytes. Mg anode cells assembled using the electrolytes were cyclically discharged at a high rate (35 mA g(-1) ), exhibiting an initial capacity of 80 mA h g(-1) and a steady-state voltage of 2.3 V.
    ABSTRACT This report describes the electrochemical behavior of a family of “core-shell” electrocatalysts consisting of a carbon nitride (CN) “shell” matrix and a “core” of conducting carbon nanoparticles (NPs). The CN “shell” matrix... more
    ABSTRACT This report describes the electrochemical behavior of a family of “core-shell” electrocatalysts consisting of a carbon nitride (CN) “shell” matrix and a “core” of conducting carbon nanoparticles (NPs). The CN “shell” matrix embeds PdCoNi alloy NPs and covers homogeneously the carbon “core”. The chemical composition of the materials is determined by inductively-coupled plasma atomic emission spectroscopy (ICP-AES) and microanalysis; the structure is studied by powder X-ray diffraction (powder XRD); the morphology is investigated by high-resolution transmission electron microscopy (HR-TEM). The surface activity and structure are probed by CO stripping. The oxygen reduction reaction (ORR) kinetics, reaction mechanism, and tolerance towards contamination from chloride anions are evaluated by cyclic voltammetry with the thin-film rotating ring-disk electrode (CV-TF-RRDE) method. The effect of N concentration in the matrix (which forms “coordination nests” for the Pd-based alloy NPs bearing the active sites) on the ORR performance of the electrocatalysts is described. Results show that N atoms: 1) influence the evolution of the structure of the materials during the preparation processes, and 2) interact with alloy NPs, affecting the bifunctional and electronic ORR mechanisms of active sites and the adsorption/desorption processes of oxygen molecules and contaminants. Finally, the best PdCoNi electrocatalyst shows a higher surface activity in the ORR at 0.9 V vs. RHE with respect to the Pt-based reference (388 μA cmPd-2 vs. 153 μA cmPt-2).
    ABSTRACT New hybrid inorganic-organic proton conducting membranes containing a ZrTa nanofiller dispersed in a Nafion® matrix are described. The ZrTa nanofiller exhibits a “core-shell” morphology, where the harder ZrO2 forms the “core”,... more
    ABSTRACT New hybrid inorganic-organic proton conducting membranes containing a ZrTa nanofiller dispersed in a Nafion® matrix are described. The ZrTa nanofiller exhibits a “core-shell” morphology, where the harder ZrO2 forms the “core”, which is covered by a “shell” of the softer Ta2O5. The hybrid membranes are thermally stable up to 170 °C. Interactions between the polymer matrix and the nanofiller increase the thermal stability of both the -SO3H groups and the fluorocarbon polymer backbone. In comparison with Nafion, the hybrid membranes have a lower water uptake (W.U.) that depends on the concentration of nanofiller. The residual water, which is approximately 4 wt%, is likely located at the Nafion-nanofiller interface. Infrared results indicate that the nanofiller does not neutralize all of the R-SO3H groups in the hybrid membrane and the small amount of residual water in the material does not cause the dissociation of the R-SO3H protons. Fuel cell tests show that the maximum power density yielded by the membrane electrode assembly (MEA) containing the hybrid membrane is better than that of the MEA containing Nafion, particularly at low values of relative humidity. The hybrid membranes require much less water to conduct protons effectively and are more efficient at retaining water than Nafion at low water activities.
    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature... more
    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.
    ABSTRACT Polybenzimidazole (PBI) has become a popular polymer of choice for the preparation of membranes for potential use in high-temperature proton exchange membrane polymer fuel cells. Phosphoric acid-doped composite membranes of... more
    ABSTRACT Polybenzimidazole (PBI) has become a popular polymer of choice for the preparation of membranes for potential use in high-temperature proton exchange membrane polymer fuel cells. Phosphoric acid-doped composite membranes of poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] (PBI4N) impregnated with hafnium oxide nanofiller with varying content levels (0–18 wt %) have been prepared. The structure–property relationships of both the undoped and acid-doped composite membranes are studied using thermogravimetric analysis, modulated differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the presence of nanofiller improves the thermal and mechanical properties of the undoped membranes and facilitates a greater level of acid uptake. The degree of acid dissociation within the acid-doped membranes is found to increase with increasing nanofiller content. This results in a conductivity, at 215 °C and a nanofiller level x ≥ 0.04, of 9.0 × 10–2 S cm–1 for [PBI4N(HfO2)x](H3PO4)y. This renders nanocomposite membranes of this type as good candidates for use in high temperature proton exchange membrane fuel cells (HT-PEMFCs).
    ABSTRACT
    A novel synthesis route yielding materials suitable for use as catalysts for the oxygen reduction reaction (ORR) in fuel cells is reported. A reaction between two inorganic salts in the presence of an organic binder leads to a... more
    A novel synthesis route yielding materials suitable for use as catalysts for the oxygen reduction reaction (ORR) in fuel cells is reported. A reaction between two inorganic salts in the presence of an organic binder leads to a metallorganic precursor, which is ...
    ABSTRACT
    In this report, we will describe the effect of different concentrations of HfO2 nanopowders on the structure and properties of [Nafion/(HfO2)n] membranes with n = 0, 3, 5, 9, 11, 13, and 15 wt %, respectively. Films were prepared by a... more
    In this report, we will describe the effect of different concentrations of HfO2 nanopowders on the structure and properties of [Nafion/(HfO2)n] membranes with n = 0, 3, 5, 9, 11, 13, and 15 wt %, respectively. Films were prepared by a solvent casting procedure using HfO2 oxoclusters and Nafion. Seven new homogeneous membranes were obtained with thicknesses ranging from 200 to 350 microm. Each membrane is characterized by a rough HfO2-rich surface and a smooth Nafion-rich surface, with different physical-chemical properties. Membrane characterization was accomplished by means of thermogravimetric analysis (TGA), morphological measurements (environmental scanning electron microscopy) and vibrational spectroscopy (Fourier transform infrared attenuated total reflectance spectroscopy and Fourier transform Raman spectroscopy). These systems can be described in terms of five types of water domains, Nafion-HfO2 species with well-defined stoichiometry surrounded by Nafion and hydrated hafnia. The highest conductivity at 125 degrees C (3.2 x 10-2 S x cm(-1)) was measured on the [Nafion/(HfO2)5] film by electrical spectroscopy, with a stability range of conductivity between 5 and 115 degrees C.
    The structure and interactions of water species in hydrated Nafion membranes as a function of water content were investigated on the basis of medium-infrared spectral analysis and molecular dynamics (MD) simulations. The spectral... more
    The structure and interactions of water species in hydrated Nafion membranes as a function of water content were investigated on the basis of medium-infrared spectral analysis and molecular dynamics (MD) simulations. The spectral decomposition of the FT-IR data in the stretching OH region was performed on different levels of hydration of the sulfate functional groups (lambdaH2O/RSO3- = 2-22). Quantum mechanical calculations of two model systems [perfluoroethanesulfonic acid/(H2O)6 cluster] and a [perfluorobutanesulfonic acid/(H2O)6 crystal] were carried out in order to account for the band assignments of Nafion in the stretching OH region (2500-4000 cm-1). Our findings indicated that the secondary structure of water species in Nafion can be accurately explained in terms of our reactive force field for water. The distinction between "surface" and "bulk" water contributions in Nafion membrane pores is proposed along with a quantitative estimate of the different types of OH groups present in the system. The average pore size was calculated and supported by the spectral results.
    This report describes a study of the effect of SiO2 nanopowders on the mechanism of ionic motion and interactions taking place in hybrid inorganic-organic membranes based on Nafion. Five nanocomposite membranes of the formula... more
    This report describes a study of the effect of SiO2 nanopowders on the mechanism of ionic motion and interactions taking place in hybrid inorganic-organic membranes based on Nafion. Five nanocomposite membranes of the formula [Nafion/(SiO2)x] with SiO2 ranging from 0 to 15 wt % were prepared by a solvent casting procedure. TG measurements demonstrated that the membranes are thermally stable up to 170 degrees C but with the loss water it changes the cluster environments and changes the conductivity properties. MDSC investigations in the 90-300 degrees C temperature range revealed the presence of three intense overlapping endothermal peaks indicated as I, II, and III. Peak I measures the order-disorder molecular rearrangement in hydrophilic polar clusters, II corresponds to the endothermic decomposition of -SO3 groups, and III describes the melting process in microcrystalline regions of hydrophobic fluorocarbon domains of the Nafion moiety. ESEM with EDAX measurements revealed that the membranes are homogeneous materials with smooth surfaces. DMA studies allowed us to measure two relaxation modes. The mechanical relaxation detected at ca. 100 degrees C is attributed to the motion of cluster aggregates of side chains and is diagnostic for R-SO3H...SiO2 nanocluster interactions. DMA disclosed that at SiO2/-SO3H (psi) molar ratios lower than 1.9, the oxoclusters act to restrict chain mobility of hydrophobic domains of Nafion and the dynamics inside polar cages of [Nafion/(SiO2)x] systems; at psi higher than 1.9, the oxoclusters reduce the cohesiveness of hydrophilic polar domains owing to a reduction in the density of cross-links. FT-IR and FT-Raman studies of the [Nafion/(SiO2)x] membranes indicated that the fluorocarbon chains of Nafion hydrophobic domains assume the typical helical conformation structure with a D(14pi/15) symmetry. These analyses revealed four different species of water domains embedded inside polar cages and their interconnecting channels: (a) bulk water [(H2O)n]; (b) water solvating the oxonium ions directly interacting with sulfonic acid groups [H3O+...SO3(-)-].(H2O)n; (c) water aggregates associated with H3O+ ions [H3O+.(H2O)n]; and (d) low associated water species in dimer form [(H2O)2]. The conductivity mechanism and relaxation events were investigated by broadband dielectric spectroscopy (BDS). [Nafion/(SiO2)x] nanocomposite membranes were found to possess two different molecular relaxation phenomena which are associated with the alpha-relaxation mode of PTFE-like fluorocarbon domains and the beta-relaxation mode of acid side groups of the Nafion component. Owing to their strong coupling, both these relaxation modes are diagnostic for the interactions between the polar groups of the Nafion host polymer and the (SiO2)x oxoclusters and play a determining role in the conductivity mechanism of the membranes. The studies support the proposal that long-range proton charge transfer in [Nafion/(SiO2)x] composites takes place due to a mechanism involving exchange of the proton between the four water domains. This latter proton transfer occurs owing to a subsequent combination of domain intersections resulting from the water domain fluctuations induced by the molecular relaxation events of host Nafion polymer.
    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by... more
    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.
    In this report, a new nanofiller consisting of silica “cores” bearing fluoroalkyl surface functionalities is synthesized and adopted in the preparation of a series of hybrid inorganic–organic proton conducting membranes based on Nafion.... more
    In this report, a new nanofiller consisting of silica “cores” bearing fluoroalkyl surface functionalities is synthesized and adopted in the preparation of a series of hybrid inorganic–organic proton conducting membranes based on Nafion. The hybrid materials are ...
    This report presents detailed studies on the elemental analysis, vibrational spectroscopy, thermal stability and electrical spectroscopy of two new hybrid inorganic–organic polymers which have been synthesised by a sol–gel method using... more
    This report presents detailed studies on the elemental analysis, vibrational spectroscopy, thermal stability and electrical spectroscopy of two new hybrid inorganic–organic polymers which have been synthesised by a sol–gel method using glycerol and zirconium(IV)butoxide as precursors. These materials have been doped by means of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm-TFSI) ionic liquid (IL), which is insoluble in water. The elemental composition of the

    And 22 more