Skip to main content
During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of... more
During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of submergence and will presumably increase in importance as the animals perform progressively longer dives. To determine the effect of a limited oxygen supply on locomotor performance, we compared the kinematics and behavior of swimming and diving bottlenose dolphins. Adult bottlenose dolphins (Tursiops truncatus) were trained to swim horizontally near the water surface or submerged at 5 m and to dive to depths ranging from 12 to 112 m. Swimming kinematics (preferred swimming mode, stroke frequency and duration of glides) were monitored using submersible video cameras (Sony Hi-8) held by SCUBA divers or attached to a pack on the dorsal fin of the animal. Drag and buoyant forces were calculated from patterns of deceleration for horizontally swimming and vertic...
During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of... more
During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of submergence and will presumably increase in importance as the animals perform progressively longer dives. To determine the effect of a limited oxygen supply on locomotor performance, we compared the kinematics and behavior of swimming and diving bottlenose dolphins. Adult bottlenose dolphins (Tursiops truncatus) were trained to swim horizontally near the water surface or submerged at 5 m and to dive to depths ranging from 12 to 112 m. Swimming kinematics (preferred swimming mode, stroke frequency and duration of glides) were monitored using submersible video cameras (Sony Hi-8) held by SCUBA divers or attached to a pack on the dorsal fin of the animal. Drag and buoyant forces were calculated from patterns of deceleration for horizontally swimming and vertic...
During diving, marine mammals must rely on the efficient utilization of a limited oxygen reserve sequestered in the lungs, blood and muscles. To determine the effects of exercise and apnea on the use of these reserves, we examined the... more
During diving, marine mammals must rely on the efficient utilization of a limited oxygen reserve sequestered in the lungs, blood and muscles. To determine the effects of exercise and apnea on the use of these reserves, we examined the physiological responses of adult bottlenose dolphins (Tursiops truncatus) trained to breath-hold on the water surface or to dive to submerged targets at depths between 60 and 210 m. Changes in blood lactate levels, in partial pressures of oxygen and carbon dioxide and in heart rate were assessed while the dolphins performed sedentary breath-holds. The effects of exercise on breath-hold capacity were examined by measuring heart rate and post-dive respiration rate and blood lactate concentration for dolphins diving in Kaneohe Bay, Oahu, Hawaii. Ascent and descent rates, stroke frequency and swimming patterns were monitored during the dives. The results showed that lactate concentration was 1.1+/-0.1 mmol l(-1) at rest and increased non-linearly with the ...