Skip to main content
Siddhi Mehta

    Siddhi Mehta

    Texas A&M University, Msen, Graduate Student
    Polymer brushes are macromolecular structures with polymer chains tethered to a surface resembling a brush. They have shown variety of uses in biological applications. Because of the nature of crafted polymers, the functionalized surfaces... more
    Polymer brushes are macromolecular structures with polymer chains tethered to a surface resembling a brush. They have shown variety of uses in biological applications. Because of the nature of crafted polymers, the functionalized surfaces exhibit unique functions such as low friction, altered adhesion, protein binding and selective adsorption. Functionalization can be controlled by changing parameters such as grafting densities, chemical configurations, shapes and thickness. In this review, a particular emphasis has been provided for studies related to biological applications of polymer brushes based on their ultra-low friction, hydrophilic elongated surfaces, and binding properties. It provides useful information for researches and labs working on finding better solutions for drug delivery, arthritis, artificial joints, antibiofouling coatings and protein immobilization and purification.
    The demand for energy storage devices made from biodegradable materials has increased significantly due to sustainability. Currently, such devices possess vital issues, such as high manufacturing costs and toxicity, low reliability, as... more
    The demand for energy storage devices made from biodegradable materials has increased significantly due to sustainability. Currently, such devices possess vital issues, such as high manufacturing costs and toxicity, low reliability, as well as poor electrochemical performance. In this research, microwave synthesis was conducted to fabricate a low-cost, high-performing, plant-based electroactive material. MnO2 microparticles fabricated via microwave irradiation were deposited on two plant-based materials as substrates made of Al/lignin and Al/AC/lignin. The quasi-solid-state supercapacitors were assembled using a polymeric gel electrolyte of PVA/H3PO4. Scanning electron microscopy was performed to examine the polydispersity, morphology, and porosity of the micro-MnO2 deposited materials. FTIR and UV-vis spectroscopy were performed to study the composition and verify deposition of micro-MnO2 on the lignin-based matrixes. Cyclic voltammetry (CV) was employed to study the polarization r...
    Bimetallic tungstate nanoparticle functionalization enables the design of high performance lignin based flexible supercapacitors.
    Products made from additive manufacturing processes have attracted great attention in engineering, health care, and society at large. However, there is little knowledge about the failure of additively manufactured alloys, in particular,... more
    Products made from additive manufacturing processes have attracted great attention in engineering, health care, and society at large. However, there is little knowledge about the failure of additively manufactured alloys, in particular, corrosion and wear seen in most engineering applications. The haphazard and inefficient usage of such alloys raised concerns about safety, compatibility, reliability, cost, and consumer satisfaction. To address those concerns, we studied the mechanisms of the most common failure modes, corrosion and wear, of alloys fabricated through additive manufacturing based on published literature. It was found that the processing conditions have profound influence on microstructure and thus corrosion and wear resistance of alloys. Because of the layered structure, the initiation and growth of both corrosion and wear exhibited anisotropic behavior. The insights from this review could be used as a reference of the state-of-the art and to help in the development o...