Skip to main content
    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock... more
    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared $235 Ma, $95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.
    Rhinoceros (rhinos) have suffered a dramatic increase in poaching over the past decade due to the growing demand for rhino horn products in Asia. One way to reverse this trend is to enhance enforcement and intelligence gathering tools... more
    Rhinoceros (rhinos) have suffered a dramatic increase in poaching over the past decade due to the growing demand for rhino horn products in Asia. One way to reverse this trend is to enhance enforcement and intelligence gathering tools used for species identification of horns, in particular making them fast, inexpensive and accurate. Traditionally, species identification tests are based on DNA sequence data, which, depending on laboratory resources, can be either time or cost prohibitive. This study presents a rapid rhino species identification test, utilizing species-specific primers within the cytochrome b gene multiplexed in a single reaction, with a presumptive species identification based on the length of the resultant ampli-con. This multiplex PCR assay can provide a presumptive species identification result in less than 24 hours. Sequence-based definitive testing can be conducted if/when required (e.g. court purposes). This work also presents an actual casework scenario in which the pre-sumptive test was successfully utlitised, in concert with sequence-based definitive testing. The test was carried out on seized suspected rhino horns tested at the Institute of Ecology and Biological Resources, the CITES mandated laboratory in Vietnam, a country that is known to be a major source of demand for rhino horns. This test represents the basis for which future 'rapid species identification tests' can be trialed.
    Aim: The ways in which abiotic factors contribute to parallel evolution-the evolution of similar, derived phenotypes in independent, closely related lineages-remain understudied. Australian cockroaches of the subfamilies Panesthiinae... more
    Aim: The ways in which abiotic factors contribute to parallel evolution-the evolution of similar, derived phenotypes in independent, closely related lineages-remain understudied. Australian cockroaches of the subfamilies Panesthiinae ("wood feed-ers") and Geoscapheinae ("soil burrowers") are two closely related groups that provide a striking example of parallel evolution of burrowing behaviour. The ancestral wood-feeding panesthiines migrated from Asia ~20 million years ago before soil burrowing was independently acquired multiple times in the derived geoscapheines. Here, we investigate whether specific abiotic factors were associated with the parallel evolution of soil burrowing behaviour, and whether divergence events of geosca-pheines from panesthiine ancestors are consistent with niche conservatism or divergence. Location: The Australian mainland, including the areas in which selected Australian Panesthiinae and Geoscapheinae cockroach species are distributed. Methods: We generated environmental niche models for members of the Australian Geoscapheinae and Panesthiinae using presence-only data and abiotic variables related to temperature, precipitation, and soil composition from BioClim and the Australian Soil Resource Information System. We used an existing phylogenetic framework to compare environmental niche models and tested for niche conservatism versus divergence. Morphological convergence was assessed by a regression analysis and principal components analysis of leg segment and body dimensions in soil burrowers and wood feeders. Results: We found no relationship between niche similarity and time since divergence , and only limited evidence for phylogenetic signal with respect to the environmental variables examined. We found that soil burrowing behaviour is consistently correlated with thirteen abiotic factors associated with aridity, including a wider range of temperatures and lower precipitation levels. Evidence for convergence in leg morphology and body dimensions across soil burrowers was found. Main conclusions: Our results are consistent with soil burrowing behaviour evolving in response to ancient aridification events following the arrival of the Panesthiinae in Australia. Our results suggest a scenario of niche divergence between soil bur-rowers and each of their wood feeding sister taxa. There is evidence for morphological convergence on a "shovel-like" protibiotarsus in the Geoscapheinae that would aid in burrowing into soil.
    Background: Sexual reproduction is the norm in almost all animal species, and in many advanced animal societies, both males and females participate in social activities. To date, the complete loss of males from advanced social animal... more
    Background: Sexual reproduction is the norm in almost all animal species, and in many advanced animal societies, both males and females participate in social activities. To date, the complete loss of males from advanced social animal lineages has been reported only in ants and honey bees (Hymenoptera), whose workers are always female and whose males display no helping behaviors even in normal sexual species. Asexuality has not previously been observed in colonies of another major group of social insects, the termites, where the ubiquitous presence of both male and female workers and soldiers indicate that males play a critical role beyond that of reproduction. Results: Here, we report asexual societies in a lineage of the termite Glyptotermes nakajimai. We investigated the composition of mature colonies from ten distinct populations in Japan, finding six asexual populations characterized by a lack of any males in the reproductive, soldier, and worker castes of their colonies, an absence of sperm in the spermathecae of their queens, and the development of unfertilized eggs at a level comparable to that for the development of fertilized eggs in sexual populations of this species. Phylogenetic analyses indicated a single evolutionary origin of the asexual populations, with divergence from sampled sexual populations occurring about 14 million years ago. Asexual colonies differ from sexual colonies in having a more uniform head size in their all-female soldier caste, and fewer soldiers in proportion to other individuals, suggesting increased defensive efficiencies arising from uniform soldier morphology. Such efficiencies may have contributed to the persistence and spread of the asexual lineage. Cooperative colony foundation by multiple queens, the single-site nesting life history common to both the asexual and sexual lineages, and the occasional development of eggs without fertilization even in the sexual lineage are traits likely to have been present in the ancestors of the asexual lineage that may have facilitated the transition to asexuality.
    Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for... more
    Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of 630 kbp, with the exception of the termite Mastotermes darwiniensis (590 kbp) and Cryptocercus punctulatus (614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes. In this study, we sequenced 11 new Blattabacterium genomes from three species of Cryptocercus in order to shed light on the genomic evolution of Blattabacterium in termites and Cryptocercus. All genomes of Cryptocercus-derived Blattabacterium genomes were reduced (614 kbp), except for that associated with Cryptocercus kyebangensis, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that Blattabacterium experienced parallel genome reduction in Mastotermes and Cryptocercus, possibly due to similar selective forces. We found evidence of ongoing genome reduction in Blattabacterium from three lineages of the C. punctulatus species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the Blattabacterium associated with Salganea taiwanensis, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in Blattabacterium, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.
    We investigated the phylogenetic diversity, localisation and metabolism of an uncultured bacterial clade, Termite Group 2 (TG2), or ZB3, in the termite gut, which belongs to the candidate phylum 'Margulisbacteria'. We performed 16S rRNA... more
    We investigated the phylogenetic diversity, localisation and metabolism of an uncultured bacterial clade, Termite Group 2 (TG2), or ZB3, in the termite gut, which belongs to the candidate phylum 'Margulisbacteria'. We performed 16S rRNA amplicon sequencing analysis and detected TG2/ZB3 sequences in 40 out of 72 termite and cockroach species, which exclusively constituted a monophyletic cluster in the TG2/ZB3 clade. Fluorescence in situ hybridisation analysis in lower termites revealed that these bacteria are specifically attached to ectosymbiotic spirochetes of oxymonad gut protists. Draft genomes of four TG2/ZB3 phylotypes from a small number of bacterial cells were reconstructed, and functional genome analysis suggested that these bacteria hydrolyse and ferment cellulose/cellobiose to H 2 , CO 2 , acetate and ethanol. We also assembled a draft genome for a partner Treponema spirochete and found that it encoded genes for reductive acetogenesis from H 2 and CO 2. We hypothesise that the TG2/ZB3 bacteria we report here are commensal or mutualistic symbionts of the spirochetes, exploiting the spirochetes as H 2 sinks. For these bacteria, we propose a novel genus, 'Candidatus Termititenax', which represents a hitherto uncharacterised class-level clade in 'Margulisbacteria'. Our findings add another layer, i.e., cellular association between bacteria, to the multi-layered symbiotic system in the termite gut.
    The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed... more
    The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed using morphological data, with six major generic groupings being recovered. Here, we infer the phylogeny of Squilloidea using a combined dataset comprising 75 somatic morphological characters and four molecular markers. 5 Nodal support is low when the morphological and molecular datasets are analysed separately but improves substantially when combined in a total-evidence phylogenetic analysis. We obtain a well resolved and strongly supported phylogeny that is largely congruent with previous estimates except that the Anchisquilloides-group, rather than the Meiosquilla-group, is the earliest-branching lineage in Squilloidea. The splits among the Anchisquilloides-and Meiosquilla-groups are followed by those of the Clorida-, Harpiosquilla-, Squilla-and Oratosquilla-groups. Most of the generic groups are 10 recovered as monophyletic, with the exception of the Squilla-and Oratosquilla-groups. However, many genera within the Oratosquilla-group are not recovered as monophyletic. Further exploration with more extensive molecular sampling will be needed to resolve relationships within the Oratosquilla-group and to investigate the adaptive radiation of squilloids. Overall, our results demonstrate the merit of combining morphological and molecular datasets for resolving phylogenetic relationships.
    The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed... more
    The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed using morphological data, with six major generic groupings being recovered. Here, we infer the phylogeny of Squilloidea using a combined dataset comprising 75 somatic morphological characters and four molecular markers. 5 Nodal support is low when the morphological and molecular datasets are analysed separately but improves substantially when combined in a total-evidence phylogenetic analysis. We obtain a well resolved and strongly supported phylogeny that is largely congruent with previous estimates except that the Anchisquilloides-group, rather than the Meiosquilla-group, is the earliest-branching lineage in Squilloidea. The splits among the Anchisquilloides-and Meiosquilla-groups are followed by those of the Clorida-, Harpiosquilla-, Squilla-and Oratosquilla-groups. Most of the generic groups are 10 recovered as monophyletic, with the exception of the Squilla-and Oratosquilla-groups. However, many genera within the Oratosquilla-group are not recovered as monophyletic. Further exploration with more extensive molecular sampling will be needed to resolve relationships within the Oratosquilla-group and to investigate the adaptive radiation of squilloids. Overall, our results demonstrate the merit of combining morphological and molecular datasets for resolving phylogenetic relationships.
    Biological invasions represent a major threat to agriculture and forestry across the globe. Thaumastocoris peregrinus is a small sap-sucking heteropteran bug that has recently invaded a number of eucalypt plantations worldwide from its... more
    Biological invasions represent a major threat to agriculture and forestry across the globe. Thaumastocoris peregrinus is a small sap-sucking heteropteran bug that has recently invaded a number of eucalypt plantations worldwide from its native range in Australia. To date, no studies have examined the range of this insect within Australia, and its population genetics remain poorly understood. We sampled T. peregrinus from 16 populations from South East Queensland, across New South Wales (NSW) and Victoria to southeastern South Australia, and generated microsatellite and mtDNA data for ~ 200 individuals. Population genetic analyses consistently revealed moderate levels of genetic isolation by distance among populations across the range. Nonetheless, T. peregrinus has undergone dispersal across large distances, as revealed by the presence of identical mitochondrial haplotypes in both South East Queensland and South Australia. Two populations within the Sydney area (NSW) were divergent from other populations based on STRU CTU RE and factorial correspondence analysis. They also had relatively low allelic richness and haplotype diversity indices. These results suggest they are the result of a relatively recent invasion event, consistent with their discovery in 2001. Pairwise genetic distance analyses suggest that the source of the invasion may have been central NSW. Our study provides an important framework for understanding the biology of this pest in its native environment, and may have implications for determining how it has invaded multiple areas worldwide. Keywords Bronzing bug · Hemiptera · Invasive insect pest · Microsatellites · Mitochondrial COI · Plantation forestry Key Message • Thaumastocoris peregrinus is an emerging pest of euca-lypt plantations worldwide; however, no studies have examined the population genetics of this species in its native range of Australia. • We sequenced both mitochondrial and microsatellite DNA from 16 T. peregrinus populations in order to investigate the level of genetic structure of this species across its native range, and test the hypothesis that individuals in Sydney represent a recent invasion. • We provide evidence that the insect in Sydney is distinct from other populations, and that it appears to be a recent invasion, whose source may be central NSW.
    Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class " Melainabacteria ". We herein reported the phylogenetic diversity of " Melainabacteria " in the guts of diverse termites... more
    Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class " Melainabacteria ". We herein reported the phylogenetic diversity of " Melainabacteria " in the guts of diverse termites and conducted a single-cell genome analysis of a melainabacterium obtained from the gut of the termite Termes propinquus. We performed amplicon sequencing of 16S rRNA genes from the guts of 60 termite and eight cockroach species, and detected melainabacterial sequences in 48 out of the 68 insect species, albeit with low abundances (0.02–1.90%). Most of the melain-abacterial sequences obtained were assigned to the order " Gastranaerophilales " and appeared to form clusters unique to termites and cockroaches. A single-cell genome of a melainabacterium, designated phylotype Tpq-Mel-01, was obtained using a fluorescence-activated cell sorter and whole genome amplification. The genome shared basic features with other melainabacterial genomes previously reconstructed from the metagenomes of human and koala feces. The bacterium had a small genome (~1.6 Mb) and possessed fermentative pathways possibly using sugars and chitobiose as carbon and energy sources, while the pathways for photosynthesis and carbon fixation were not found. The genome contained genes for flagellar components and chemotaxis; therefore, the bacterium is likely motile. A fluorescence in situ hybridization analysis showed that the cells of Tpq-Mel-01 and/or its close relatives are short rods with the dimensions of 1.1±0.2 μm by 0.5±0.1 μm; for these bacteria, we propose the novel species, " Candidatus Gastranaerophilus termiticola ". Our results provide fundamental information on " Melainabacteria " in the termite gut and expand our knowledge on this underrepresented, non-photosynthetic cyanobacterial group.
    Cockroaches are among the most recognizable of all insects. In addition to their role as pests, they play a key ecological role as decomposers. Despite numerous studies of cockroach phylogeny in recent decades, relationships among most... more
    Cockroaches are among the most recognizable of all insects. In addition to their role as pests, they play a key ecological role as decomposers. Despite numerous studies of cockroach phylogeny in recent decades, relationships among most major lineages are yet to be resolved. Here we examine phylogenetic relationships among cockroaches based on five genes (mitochondrial 12S rRNA, 16S rRNA, COII; nuclear 28S rRNA and histone H3), and infer divergence times on the basis of 8 fossils. We included in our analyses sequences from 52 new species collected in China, representing 7 families. These were combined with data from a recent study that examined these same genes from 49 species, resulting in a significant increase in taxa analysed. Three major lineages, Corydioidea, Blaberoidea, and Blattoidea were recovered, the latter comprising Blattidae, Tryonicidae, Lamproblattidae, Anaplectidae, Cryptocercidae and Isoptera. The estimated age of the split between Mantodea and Blattodea ranged from 204.3 Ma to 289.1 Ma. Corydioidea was estimated to have diverged 209.7 Ma (180.5–244.3 Ma 95% confidence interval [CI]) from the remaining Blattodea. The clade Blattoidea diverged from their sister group, Blaberoidea, around 198.3 Ma (173.1–229.1 Ma). The addition of the extra taxa in this study has resulted in significantly higher levels of support for a number of previously recognized groupings.
    The marine metazoan fauna first diversified in the early Cambrian, but terrestrial environments were not colonized until at least 100 million years later. Among the groups of organisms that successfully colonized land is the crustacean... more
    The marine metazoan fauna first diversified in the early Cambrian, but terrestrial environments were not colonized until at least 100 million years later. Among the groups of organisms that successfully colonized land is the crustacean order Isopoda. Of the 10,000 described isopod species, ~ 3,600 species from the suborder Oniscidea are terrestrial. Although it is widely thought that isopods colonized land only once, some studies have failed to confirm the monophyly of Oniscidea. To infer the evolutionary relationships among isopod lineages, we conducted phylogenetic analyses of nuclear 18S and 28S and mitochondrial COI genes using maximum-likelihood and Bayesian methods. We also analyzed a second data set comprising all of the mitochondrial protein-coding genes from a smaller sample of isopod taxa. Based on our analyses using a relaxed molecular clock, we dated the origin of terrestrial iso-pods at 289.5 million years ago (95% credibility interval 219.6– 358.9 million years ago). These predate the known fossil record of these taxa and coincide with the formation of the supercon-tinent Pangaea and with the diversification of vascular plants on land. Our results suggest that the terrestrial environment has been colonized more than once by isopods. The monophyly of the suborder Oniscidea was not supported in any of our analyses, conflicting with classical views based on morphology. This draws attention to the need for further work on this group of isopods.
    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock... more
    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared $235 Ma, $95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.
    —In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include... more
    —In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include those designed for species-level data, such as the pure-birth and birth–death priors, and coalescent-based priors designed for population-level data. However, molecular dating methods are frequently applied to data sets that include multiple individuals across multiple species. Such data sets violate the assumptions of both the speciation and coalescent-based tree priors, making it unclear which should be chosen and whether this choice can affect the estimation of node times. To investigate this problem, we used a simulation approach to produce data sets with different proportions of within-and between-species sampling under the multispecies coalescent model. These data sets were then analyzed under pure-birth, birth–death, constant-size coalescent, and skyline coalescent tree priors. We also explored the ability of Bayesian model testing to select the best-performing priors. We confirmed the applicability of our results to empirical data sets from cetaceans, phocids, and coregonid whitefish. Estimates of node times were generally robust to the choice of tree prior, but some combinations of tree priors and sampling schemes led to large differences in the age estimates. In particular, the pure-birth tree prior frequently led to inaccurate estimates for data sets containing a mixture of inter-and intraspecific sampling, whereas the birth–death and skyline coalescent priors produced stable results across all scenarios. Model testing provided an adequate means of rejecting inappropriate tree priors. Our results suggest that tree priors do not strongly affect Bayesian molecular dating results in most cases, even when severely misspecified. However, the choice of tree prior can be significant for the accuracy of dating results in the case of data sets with mixed inter-and intraspecies sampling.
    Aim The Australian Coptotermes (Family: Rhinotermitidae) are a small mono-phyletic group of termites, some of which build mounds. In this study, we construct predicted distributions based on environmental data (niche models) for all... more
    Aim The Australian Coptotermes (Family: Rhinotermitidae) are a small mono-phyletic group of termites, some of which build mounds. In this study, we construct predicted distributions based on environmental data (niche models) for all Australian species of Coptotermes to test whether specific environmental factors have contributed to the evolution of mound-building behaviour and whether the degree of niche similarity and degree of phylogenetic similarity are correlated. Location The Australian mainland, including the known native ranges of all Australian species of Coptotermes. Methods We estimated the phylogenetic relationships between the species of Australian Coptotermes. We then generated and compared environmental niche models in a phylogenetic framework for all study species to test niche conservation. Our analyses were based on location data from our own sampling and from the Atlas of Living Australia, genetic data from a previous study of Australian Coptotermes, and environmental data from WorldClim and ASRIS. Results We found that no environmental variable differed consistently between mound-building and non-mound-building taxa and that the differences in niches between pairs of Australian species of Coptotermes are uncorre-lated with time since divergence. The environmental tolerances of the Australian Coptotermes termites are more restricted by rainfall than they are by soil or temperature. Main conclusions Our results show that mound-building behaviour has not necessarily evolved in response to similar abiotic conditions. Our results are consistent with ecological speciation leading to niche divergence since Coptoter-mes first arrived in Australia ~12.5 million years ago.
    The crustacean order Stomatopoda comprises seven superfamilies of mantis shrimps, found in coastal waters of the tropics and subtropics. These marine carnivores bear notable raptorial appendages for smashing or spearing prey. We... more
    The crustacean order Stomatopoda comprises seven superfamilies of mantis shrimps, found in coastal waters of the tropics and subtropics. These marine carnivores bear notable raptorial appendages for smashing or spearing prey. We investigated the evolutionary relationships among stomatopods using phylogenetic analyses of three mitochondrial and two nuclear markers. Our analyses recovered the superfamily Gonodactyloidea as polyphyletic, with Hemisquilla as the sister group to all other extant stomatopods. A relaxed molecular clock, calibrated by seven fossil-based age constraints, was used to date the origin and major diversification events of stomatopods. Our estimates suggest that crown-group stomatopods (Unipeltata) diverged from their closest crustacean relatives about 340 Ma (95% CRI [401–313 Ma]). We found that the specialized smashing appendage arose after the spearing appendage ∼126 Ma (95% CRI [174–87 Ma]). Ancestral state reconstructions revealed that the most recent common ancestor of extant stomatopods had eyes with six midband rows of hexagonal ommatidia. Hexagonal ommatidia are interpreted as plesiomorphic in stomatopods, and this is consistent with the malacostracan ground-plan. Our study provides insight into the evolutionary timescale and systematics of Stomatopoda, although further work is required to resolve with confidence the phylogenetic relationships among its superfamilies.
    Termites differ from hymenopteran social insects in several important respects, perhaps most significantly in their sex and caste determination systems: while hyme-nopteran colonies are female dominated (and sex determination is... more
    Termites differ from hymenopteran social insects in several important respects, perhaps most significantly in their sex and caste determination systems: while hyme-nopteran colonies are female dominated (and sex determination is haplo-diploid), termite colonies are usually split evenly between males and females (and sex determination is through sex chromosomes). Not all termite species have an equal sex ratio—in the termite genus Schedo-rhinotermes, almost all workers and soldiers are females. The mechanism maintaining this sex ratio skew is unknown, but a possible mechanism (known in other termites as a mechanism for producing reproductives) is parthenogene-sis. Under this scenario, soldiers and workers would be offspring of the queen only. In this study, we performed microsatellite analysis on 11 colonies of Schedorhinotermes intermedius (Isoptera: Rhinotermitidae) to investigate the parentage of workers, soldiers and alates within colonies, and to determine whether parthenogenesis is responsible for the production of female workers and soldiers. We also conducted a preliminary analysis of population and colony genetic structure. We found that females from a single colony had in some instances more than two alleles among them at a single microsatellite locus. This indicates that a single female cannot be producing these offspring, as she has a maximum of two different alleles at any locus, ruling out the possibility that the high proportion of females in this species comes about through parthenogenesis.
    Woodroaches from the genus Cryptocercus Scudder, 1862 are known to display low levels of morphological divergence, yet significant genetic divergence and variability in chromosome number. Compared with Cryptocercus taxa from North... more
    Woodroaches from the genus Cryptocercus Scudder, 1862 are known to display low levels of morphological divergence, yet significant genetic divergence and variability in chromosome number. Compared with Cryptocercus taxa from North America, the diversity of the genus in Asia has received relatively little attention. We performed morphological and karyotypic examinations of multiple taxa from several previously unsampled mountainous areas of central and southwestern China, and identified nine candidate species primarily on the basis of chromosome number. We then investigated diversity across all Asian Cryptocercus, through phylogenetic analyses of 135 COI sequences and 74 28S rRNA sequences from individuals of 28 localities, including species delimitation analysis in General Mixed Yule Coalescent (GMYC) and Automatic Barcode Gap Discovery (ABGD). Phylogenetic results indicated that individuals from the same locality constituted well supported clades. The congruence of GMYC and ABGD results were in almost perfect accord, with 28 candidate species described on the basis of karyotypes (including the nine identified in this study). We provide evidence that each valley population in the Hengduan Mountains contains a separate evolving lineage. We conclude that the principal cause of the rich Cryptocercus diversity in China has been the uplift of the Qinghai-Tibet Plateau.
    The aphid Aphis gossypii Glover is an important pest of Australian cotton and has developed resistance to many chemicals used for its control. Its resistance management is partially based on chemical rotation that relies on insecticide... more
    The aphid Aphis gossypii Glover is an important pest of Australian cotton and has developed resistance to many chemicals used for its control. Its resistance management is partially based on chemical rotation that relies on insecticide resistance being associated with fitness costs. Therefore, understanding fitness costs associated with insecticide resistance is critical to its sustainable resistance management. We studied the fitness cost of pirimicarb resistance in A. gossypii caused by a single mutation in the acetylcholinesterase gene ACE1 by mixing different ratios of susceptible and resistant aphids. This was achieved by establishing A. gossypii populations of a known starting allele frequency in aphid proof cages and measuring allele frequency change over time via qPCR. Unlike traditional cohort fitness studies, we used competitive fitness as a measure of relative fitness of resistant versus susceptible aphids in the same environment. We demonstrate that competitive fitness measured in this study is an accurate predictor of overall relative fitness. We found that pirimi-carb resistance had a significant fitness cost in the presence of susceptible aphids in the absence of insecticide pressure and that the fitness cost was related to the initial resistance allele frequency. By using the competitive fitness measure and knowing the initial allele frequency, it is possible to predict the likely time from resistant to an essentially susceptible population. As resistance was stable in the absence of susceptible competition, we recommend the use of resistance management tactics that do not completely eliminate the susceptible genotype such as complimentary integrated pest management. • Understanding fitness costs associated with insecticide resistance is critical to sustainable resistance management. • We estimated the competitive fitness of pirimicarb resistance in Aphis gossypii by mixing different ratios of susceptible and resistant aphids reared in aphid proof cages. • We found that pirimicarb resistance had a significant fitness cost in the presence of susceptible aphids and the fitness cost was related to the initial resistance allele frequency (RAF).
    Developmental plasticity is a key driver of the extraordinary ecological success of insects. Epigenetic mechanisms provide an important link between the external stimuli that initiate polyphenisms, and the stable changes in gene... more
    Developmental plasticity is a key driver of the extraordinary ecological success of insects. Epigenetic mechanisms provide an important link between the external stimuli that initiate polyphenisms, and the stable changes in gene expression that govern alternative insect morphs. We review the epigenetics of orthopteroid insects, focussing on recent research on locusts and termites, two groups which display high levels of phenotypic plasticity, and for which genome sequences have become available in recent years. We examine research on the potential role of DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression in these insects. DNA methylation patterns in orthopteroids share a number of characteristics with those of hymenopteran insects, although methylation levels are much higher, and extend to introns and repeat elements. Future examinations of epigenetic mechanisms in these insects will benefit from comparison of tissues from aged-matched individuals from alternative morphs, and adequate biological replication.
    We collected Ectobiidae cockroach specimens from 44 locations in the south of the Yangtze valley. We obtained 297 COI sequences specimens and carried out phylogenetic and divergence dating analyses, as well as species delimitation... more
    We collected Ectobiidae cockroach specimens from 44 locations in the south of the Yangtze valley. We obtained 297 COI sequences specimens and carried out phylogenetic and divergence dating analyses, as well as species delimitation analysis using a General Mixed Yule Coalescent (GMYC) framework. The intraspecific and interspecific sequence divergence in Ectobiidae cockroaches ranged from 0.0 to 7.0% and 4.6 to 30.8%, respectively. GMYC analysis resulted in 53 (confidence interval: 37–65) entities (likelihood ratio = 103.63) including 14 downloaded species. The COI GMYC groups partly corresponded to the ectobiid species and 52 ectobiid species were delimited successfully based on the combination of GMYC result with morphological information. We used the molecular data and 6 cockroach fossil calibrations to obtain a preliminary estimate of the timescale of ectobiid evolution. The major subfamilies in the group were found to have diverged between ~125–110 Ma, and morphospecies pairs were found to have diverged ~10 or more Ma.
    Migratory birds encounter a broad range of pathogens during their journeys, making them ideal models for studying immune gene evolution. Despite the potential value of these species to immunoecology and disease epidemiology , previous... more
    Migratory birds encounter a broad range of pathogens during their journeys, making them ideal models for studying immune gene evolution. Despite the potential value of these species to immunoecology and disease epidemiology , previous studies have typically focused on their adaptive immune gene repertoires. In this study, we examined the evolution of innate immune genes in three long-distance migratory waders (order Charadriiformes). We analysed two parts of the extracellular domains of two Toll-like receptors (TLR3 and TLR7) involved in virus recognition in the Sanderling (Calidris alba), Red-necked Stint (Calidris ruficollis), and Ruddy Turnstone (Arenaria interpres). Our analysis was extended to 50 avian species for which whole-genome sequences were available, including two additional waders. We found that the inferred relationships among avian TLR3 and TLR7 do not match the whole-genome phylogeny of birds. Further analyses showed that although both loci are predominantly under purifying selection, the evolution of the extracellular domain of avian TLR3 has also been driven by episodic diversifying selection. TLR7 was found to be duplicated in all five wader species and in two other orders of birds, Cuculiformes and Passeriformes. The duplication is likely to have occurred in the ancestor of each order, and the duplicated copies appear to be undergoing concerted evolution. The phylogenetic relationships of wader TLR7 matched those of the five wader species, but that of TLR3 did not. Instead, the tree inferred from TLR3 showed potential associations with the species' ecology, including migratory behaviour and exposure to pathogens. Our study demonstrates the importance of combining immunological and ecological knowledge to understand the impact of immune gene polymorphism on the evolutionary ecology of infectious diseases.
    Genomes evolve through a combination of mutation, drift, and selection, all of which act heterogeneously across genes and lineages. This leads to differences in branch-length patterns among gene trees. Genes that yield trees with the same... more
    Genomes evolve through a combination of mutation, drift, and selection, all of which act heterogeneously across genes and lineages. This leads to differences in branch-length patterns among gene trees. Genes that yield trees with the same branch-length patterns can be grouped together into clusters. Here, we propose a novel phylogenetic approach to explain the factors that influence the number and distribution of these gene-tree clusters. We apply our method to a genomic dataset from insects, an ancient and diverse group of organisms. We find some evidence that when drift is the dominant evolutionary process, each cluster tends to contain a large number of fast-evolving genes. In contrast, strong negative selection leads to many distinct clusters, each of which contains only a few slow-evolving genes. Our work, although preliminary in nature, illustrates the use of phylogenetic methods to shed light on the factors driving rate variation in genomic evolution.
    Integrative taxonomy, including molecular, morphological, distributional and biological data, is applied in a review of the taxonomy of the Australian species of the pest termite genus Coptotermes. The validity of the previously described... more
    Integrative taxonomy, including molecular, morphological, distributional and biological data, is applied in a review of the taxonomy of the Australian species of the pest termite genus Coptotermes. The validity of the previously described species is discussed, and two new species, Coptotermes nanus, sp. nov. and Coptotermes cooloola, sp. nov., are described from the Kimberley region of Western Australia and southeast Queensland respectively. Their delimitation is based on morphological and distributional data, and the results of generalised mixed Yule-coalescent analysis of mitochondrial DNA sequence data. Images of the external view of the two new species are provided, as well as a key, based on soldier characters, for all Australian species of Coptotermes.
    The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals,... more
    The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene ($54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42–54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35–23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23–5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems.
    Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6–8 m in height and housing millions of individuals. Although functional aspects of these... more
    Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6–8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phy-logenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the past approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes.
    " Candidatus Endomicrobium trichonymphae " (Bacteria; Elusimicrobia) is an obligate intracellular symbiont of the cellulolytic protist genus Trichonympha in the termite gut. A previous genome analysis of " Ca. Endomicrobium trichonymphae... more
    " Candidatus Endomicrobium trichonymphae " (Bacteria; Elusimicrobia) is an obligate intracellular symbiont of the cellulolytic protist genus Trichonympha in the termite gut. A previous genome analysis of " Ca. Endomicrobium trichonymphae " phylotype Rs-D17 (genomovar Ri2008), obtained from a Trichonympha agilis cell in the gut of the termite Reticulitermes speratus, revealed that its genome is small (1.1 Mb) and contains many pseudogenes; it is in the course of reductive genome evolution. Here we report the complete genome sequence of another Rs-D17 genomovar, Ti2015, obtained from a different T. agilis cell present in an R. speratus gut. These two genomovars share most intact protein-coding genes and pseudogenes, showing 98.6% chromosome sequence similarity. However, characteristic differences were found in their defense systems, which comprised restriction-modification and CRISPR/Cas systems. The repertoire of intact restriction-modification systems differed between the genomovars, and two of the three CRISPR/Cas loci in genomovar Ri2008 are pseudogenized or missing in genomovar Ti2015. These results suggest relaxed selection pressure for maintaining these defense systems. Nevertheless, the remaining CRISPR/Cas system in each genomovar appears to be active; none of the " spacer " sequences (112 in Ri2008 and 128 in Ti2015) were shared whereas the " repeat " sequences were identical. Furthermore, we obtained draft genomes of three additional endosymbiotic Endomicrobium phylotypes from different host protist species, and discovered multiple, intact CRISPR/Cas systems in each genome. Collectively, unlike bacteriome endosymbionts in insects, the Endomicrobium endosymbionts of termite-gut protists appear to require defense against foreign DNA, although the required level of defense has likely been reduced during their intracellular lives.
    Reconstructing the timescale of the Tree of Life is one of the principal aims of evolutionary biology. This has been greatly aided by the development of the molecular clock, which enables evolutionary timescales to be estimated from... more
    Reconstructing the timescale of the Tree of Life is one of the principal aims of evolutionary biology. This has been greatly aided by the development of the molecular clock, which enables evolutionary timescales to be estimated from genetic data. In recent years, high-throughput sequencing technology has led to an increase in the feasibility and availability of genome-scale data sets. These represent a rich source of biological information, but they also bring a set of analytical challenges. In this review, we provide an overview of phylogenomic dating and describe the challenges associated with analysing genome-scale data. We also report on recent phylogenomic estimates of the evolutionary timescales of mammals, birds, and insects.
    Defining and understanding species diversity forms the basis of a wide range of biological and conservation work. Traditional taxonomy can be complemented and accelerated using molecular methods of species delimitation, such as the widely... more
    Defining and understanding species diversity forms the basis of a wide range of biological and conservation work. Traditional taxonomy can be complemented and accelerated using molecular methods of species delimitation, such as the widely used Generalised Mixed Yule-Coalescent (GMYC) approach. This method uses time-calibrated phylogenetic trees in order to identify transition points between inter-and intraspecific divergence processes. Despite some important limitations, the GMYC approach appears to be robust to a wide range of dataset characteristics. It is one of the few model-based species-delimitation methods that remain practical for analysing molecular datasets with a large numbers of taxa. Most GMYC analyses have been based on datasets consisting of one or a small number of mitochondrial genes. To investigate the sensitivity of GMYC to the choice of mito-chondrial marker, we compared GMYC estimates from 15 mitochondrial genes for three vertebrate datasets (cetaceans, ursids and whitefish). Despite the shared evolutionary history among mitochondrial genes, different markers exhibited substantial variation in GMYC delimitation results across all three datasets. This variability was not restricted to specific genes or taxa and extended to commonly used barcoding genes such as COI and CYTB. Using multiple concatenated markers mitigated these problems in two of the datasets, but exacerbated systematic biases present in a third. Our findings indicate the need to consider multiple markers, loci and lines of evidence when performing molecular species delimitation.
    all named species within the genus and investigated evidence supporting the validity of each named species. Species were systematically scrutinized according to the region of their original description: Southeast Asia, India, China,... more
    all named species within the genus and investigated evidence supporting the validity of each named species. Species were systematically scrutinized according to the region of their original description: Southeast Asia, India, China, Africa, the Neotropics, and Australia. We estimate that of the currently 69
    Background: To date, little has been documented about microorganisms harboured within Australian native ticks or their pathogenic potential. Recently, a Borrelia sp. related to the Relapsing Fever (RF) group was identified in a single... more
    Background: To date, little has been documented about microorganisms harboured within Australian native ticks or their pathogenic potential. Recently, a Borrelia sp. related to the Relapsing Fever (RF) group was identified in a single tick removed from a wild echidna (Tachyglossus aculeatus). The present study investigated the presence of Borrelia in 97 Bothriocroton concolor ticks parasitizing echidnas in Queensland, New South Wales, and Victoria, Australia, using nested PCR with Borrelia-specific primers targeting the 16S rRNA (16S) and flaB genes.
    The molecular clock is a valuable and widely used tool for estimating evolutionary rates and timescales in biological research. There has been considerable progress in the theory and practice of molecular clocks over the past five... more
    The molecular clock is a valuable and widely used tool for estimating evolutionary rates and timescales in biological research. There has been considerable progress in the theory and practice of molecular clocks over the past five decades. Although the idea of a molecular clock was originally put forward in the context of protein evolution and advanced using various biochemical techniques, it is now primarily applied to analyses of DNA sequences. An interesting but very underappreciated aspect of molecular clocks is that they can be based on genetic data other than DNA or protein sequences. For example, evolutionary timescales can be estimated using microsatellites, protein folds, and even the extent of recombination. These genome features hold great potential for molecular dating, particularly in cases where nucleotide sequences might be uninformative or unreliable. Here we present an outline of the different genetic data types that have been used for molecular dating, and we describe the features that good molecular clocks should possess. We hope that our article inspires further work on the genome as an evolutionary timepiece.
    Background: The Australian paralysis tick (Ixodes holocyclus) is of significant medical and veterinary importance as a cause of dermatological and neurological disease, yet there is currently limited information about the bacterial... more
    Background: The Australian paralysis tick (Ixodes holocyclus) is of significant medical and veterinary importance as a cause of dermatological and neurological disease, yet there is currently limited information about the bacterial communities harboured by these ticks and the risk of infectious disease transmission to humans and domestic animals. Ongoing controversy about the presence of Borrelia burgdorferi sensu lato (the aetiological agent of Lyme disease) in Australia increases the need to accurately identify and characterise bacteria harboured by I. holocyclus ticks.
    Cryptocercus is a genus of sub-social wood-feeding cockroaches that represents the sister group to the eusocial termites. We generated mitochondrial (12S + 16S rRNA, COII), nuclear (28S rRNA) and Blattbacterium endosymbiont (16S + 23S... more
    Cryptocercus is a genus of sub-social wood-feeding cockroaches that represents the sister group to the eusocial termites. We generated mitochondrial (12S + 16S rRNA, COII), nuclear (28S rRNA) and Blattbacterium endosymbiont (16S + 23S rRNA) sequence data for 8 new Chinese species, and combined these with previously available data to undertake the most extensive analysis of phylogenetic relationships within the genus to date. As expected, phylogenetic relationships among Blattabacterium strains were found to be congruent with those of their hosts. Three major clades were found to exist in Asian populations, one representing taxa from the Hengduan mountains in Southwestern China, a second including taxa from Russia, Korea, Northeastern China, and Yunnan in the Hengduan Mountains, and a third including taxa from the Qinling Mountains and Daba Mountains in Central China. A molecular dating analysis using 7 termite fossils to calibrate the molecular clock indicated that the divergence of American and Asian Cryptocercus occurred 55.09 Ma (41.55–72.28 Ma 95% CI), and that the radiations of American and Asian taxa occurred 28.48 Ma (20.83–37.95 Ma 95% CI) and 20.97 Ma (15.78– 27.21 Ma 95% CI) respectively. Reconstruction of ancestral geographic distributions using S-DIVA suggested Cryptocercus was originally distributed across both continents, as opposed to ancestral migration of Cryptocercus from one continent to the other. The last common ancestor of Asian Cryptocercus was inferred to have existed in Central China. An examination of male chromosome numbers in Asian Cryptocercus showed that diploid numbers vary from 2n = 15 to 2n = 41, and indicates the presence of eight new species. Our study represents the most comprehensive phylogenetic and biogeographic study yet performed for this important group of cockroaches.
    Parallel evolution is the independent appearance of similar derived phenotypes from similar ancestral forms. It is of key importance in the debate over whether evolution is stochastic and unpredictable, or subject to constraints that... more
    Parallel evolution is the independent appearance of similar derived phenotypes from similar ancestral forms. It is of key importance in the debate over whether evolution is stochastic and unpredictable, or subject to constraints that limit available phenotypic options. Nevertheless, its occurrence has rarely been demonstrated above the species level. Climate change on the Australian landmass over the last approximately 20 Myr has provided conditions conducive to parallel evolution, as taxa at the edges of shrinking mesic habitats adapted to drier biomes. Here, we investigate the phylogeny and evolution of Australian soil-burrowing and wood-feeding blaberid cockroaches. Soil burrowers (subfamily Geoscapheinae) are found in relatively dry sclerophyllous and scrubland habits, whereas wood feeders (subfamily Panesthiinae) are found in rainforest and wet sclerophyll. We sequenced and analysed mitochondrial and nuclear markers from 142 specimens, and estimated the evolutionary time scale of the two subfamilies. We found evidence for the parallel evolution of soil-burrowing taxa from wood-feeding ancestors on up to nine occasions. These transitions appear to have been driven by periods of aridification during the Miocene and Pliocene across eastern Australia. Our results provide an illuminating example of climate-driven parallel evolution among species.
    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation... more
    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

    And 84 more