Skip to main content
Moisture-induced protein aggregation through intermolecular interactions such as disulfide bonding can occur in a high-protein-containing food matrix during nonthermal processing and storage. The present study investigated the effect of... more
Moisture-induced protein aggregation through intermolecular interactions such as disulfide bonding can occur in a high-protein-containing food matrix during nonthermal processing and storage. The present study investigated the effect of moisture-induced whey protein aggregation on the structure and texture of such high-protein-containing matrices using a protein/buffer model system. Whey proteins in the protein/buffer model systems formed insoluble aggregates during 3 months' storage at temperatures varying from 4 to 45 degrees C, resulting in changes in microstructure and texture. The level of aggregation that began to cause significant texture change was an inverse function of storage temperature. The protein conformation and the state of water molecules in the model system also changed during storage, as measured by differential scanning calorimetry and Fourier transform infrared spectroscopy. During storage, the model system that had an initially smooth structure formed aggregated particles (100-200 nm) as measured by scanning electron microscopy, which lead to an aggregation network in the high-protein-containing matrix and caused a harder texture.