Skip to main content
Chronic use of psychostimulants induces enduringly increased responsiveness to a subsequent psychostimulant injection and sensitivity to drug-associated cues, contributing to drug craving and relapse. Neurotensin (NT), a neuropeptide... more
Chronic use of psychostimulants induces enduringly increased responsiveness to a subsequent psychostimulant injection and sensitivity to drug-associated cues, contributing to drug craving and relapse. Neurotensin (NT), a neuropeptide functionally linked to dopaminergic neurons, was suggested to participate in these phenomena. We and others have reported that SR 48692, an NT receptor antagonist, given in pre- or co-treatments with cocaine or amphetamine, alters some behavioral effects of these drugs in rats. However, its efficacy when applied following repeated cocaine administration remains unknown. We, therefore, evaluated the ability of SR 48692, administered after a cocaine regimen, to interfere with the expression of locomotor sensitization and conditioned place preference (CPP) in rats. We demonstrated that the expression of locomotor sensitization, induced by four cocaine injections (15 mg/kg, i.p.) every other day and a cocaine challenge 1 week later, was attenuated by a subsequent 2-week daily administration of SR 48692 (1 mg/kg, i.p.). Furthermore, the expression of cocaine-induced CPP was suppressed by a 10-day SR 48692 treatment started after the conditioning period (four 15 mg/kg cocaine injections every other day). Taken together, our data show that a chronic SR 48692 treatment given after a cocaine regimen partly reverses the expression of locomotor sensitization and CPP in the rat, suggesting that NT participates in the maintenance of these behaviors. Our results support the hypothesis that targeting neuromodulatory systems, such as the NT systems may offer new strategies in the treatment of drug addiction.
The development of corticosteroid receptors may be permanently modified by perinatal hormonal influences. Changes in binding characteristics of corticosteroid receptors were examined in rats treated sc. with 1 microgram/g dexamethasone... more
The development of corticosteroid receptors may be permanently modified by perinatal hormonal influences. Changes in binding characteristics of corticosteroid receptors were examined in rats treated sc. with 1 microgram/g dexamethasone (DEX) on postnatal day (PND) 1 and subsequently two more times on PND 3 and 5 in several brain areas. [3H]Corticosterone (CORT) binding capacity (Bmax) and affinity (Kd) were determined at 3 weeks old and adult ages by using saturation analysis. The mineralocorticoid type receptor (MR) and the glucocorticoid receptor (GR) sites were measured separately with single point analysis applying a selective glucocorticoid ligand RU 28362 saturating GR. The decrease in CORT binding was due to a selective GR decrement in all structures and the MR concentration was not changed considerably. The basal levels of plasma CORT were not permanently influenced by neonatal DEX. In conclusion, DEX given during the first week of life resulted in long-term and selective down-regulation of GR and this decrement was independent of the actual circulating CORT level.
Glucocorticoids have a prominent impact on the maturation of the stress-related neuroendocrine system and on the postnatal establishment of adaptive behaviour. The present study aimed at investigating the stress responsiveness of the... more
Glucocorticoids have a prominent impact on the maturation of the stress-related neuroendocrine system and on the postnatal establishment of adaptive behaviour. The present study aimed at investigating the stress responsiveness of the hypothalamo-pituitary-adrenocortical (HPA) axis in young and adult rats after neonatal treatment with the synthetic glucocorticoid agonist, dexamethasone. Newborn male Wistar rats were injected s.c. with 1 microg/g dexamethasone on postnatal days 1, 3 and 5. Circulating adrenocorticotropic hormone (ACTH) and corticosterone concentrations were measured in the resting state and following a 30-min cold stress at the age of 10 days, as well as after a 30-min restraint stress at the age of 14 weeks. Also in adults, pituitary and adrenocortical hormone responsiveness was evaluated after i.v. administration of 2 microg/kg corticotropin releasing hormone (CRH). In addition, glucocorticoid (GR) and mineralocorticoid receptor (MR) binding capacities were assessed in the pituitaries of adult rats. The results showed that at day 10 basal ACTH concentration was elevated while the cold stress-evoked ACTH response was attenuated in the dexamethasone-treated rats. As adults, treated rats showed a suppressed elevation of both ACTH and corticosterone plasma concentrations in response to restraint, while basal hormonal concentrations were not altered. There was no difference in the magnitude of the CRH-induced elevation of ACTH and corticosterone concentrations initially; however, the dexamethasone-treated animals showed a prolonged secretion of both hormones. These animals also showed a selective decrease in pituitary GR binding capacity. Neonatal dexamethasone treatment strongly suppressed body weight gain, and adrenal and thymus weights in the early phase of postnatal development. By adulthood, the body and adrenal weights were normalized while thymus weight was greater than in controls. These findings indicate that neonatal dexamethasone treatment permanently alters HPA axis activity by reducing stress responses to cold and restraint probably through supra-pituitary actions, and by decreasing the effectiveness of feedback through a diminished GR binding in the pituitary.