Skip to main content
Mixed-layer illite-smectite (I-S) from a new set of Pennsylvanian-aged Illinois Basin underclays, identified as paleosols, are investigated to assess the impact of (1) regional diagenesis across the basin and (2) the extent to which... more
Mixed-layer illite-smectite (I-S) from a new set of Pennsylvanian-aged Illinois Basin underclays, identified as paleosols, are investigated to assess the impact of (1) regional diagenesis across the basin and (2) the extent to which ancient environments promoted illitization during episodes of soil formation. Interpretations from Reichweite Ordering and Δ° 2θ metrics applied to X-ray diffraction patterns suggest that most I-S in Illinois Basin paleosols are likely the product of burial diagenetic processes and not ancient soil formation processes. Acid leaching from abundant coal units and hydrothermal brines are likely diagenetic mechanisms that may have impacted I-S in Pennsylvanian paleosols. These findings also suggest that shallowly buried basins (<3 km) such as the Illinois Basin may still promote clay mineral alteration through illitization pathways if maximum burial occurred in the deep past and remained within the diagenetic window for extended periods of time. More impo...
The fully continental succession of the Beaufort Group, Karoo Basin, South Africa, has been used in the development of environmental models proposed for the interval that spans the contact between the Daptocephalus to Lystrosaurus... more
The fully continental succession of the Beaufort Group, Karoo Basin, South Africa, has been used in the development of environmental models proposed for the interval that spans the contact between the Daptocephalus to Lystrosaurus Assemblage Zones, associated by some workers with the end-Permian extinction event. An aridification trend is widely accepted, yet geochemical data indicate that the majority of in situ paleosols encountered in this interval developed in waterlogged environments. To date, the presence of calcic paleosols in the latest Permian can be inferred only from the presence of calcite-cemented pedogenic nodules concentrated in fluvial channel-lag deposits. Here, we report on the first empirical evidence of in situ calcic Vertisols found in the upper Daptocephalus Assemblage Zone near Old Wapadsberg Pass, one of eight classic localities in which the vertebrate turnover is reported in the Karoo Basin. Seven discrete intervals of calcic Vertisols, exposed over a very l...
Research Interests:
Late Oligocene (28 – 27 Ma) strata from northwest Ethiopia provide a unique opportunity to reconstruct Paleogene tropical African paleoecology using evidence from numerous proxies. Geochemical, sedimentological, and ...
Climate models indicate increased desertification in the continental interior of Pangea during the Permian, which would have affected the composition of the flora and fauna. We present a multi-proxy paleoenvironmental reconstruction of a... more
Climate models indicate increased desertification in the continental interior of Pangea during the Permian, which would have affected the composition of the flora and fauna. We present a multi-proxy paleoenvironmental reconstruction of a terrestrial ecosystem in central Pangea of Lopingian age. The reconstruction is based on biological and physical data from the Moradi Formation, located in the Tim Mersoi Basin, northern Niger. Paleosols and sedimentological evidence indicate that the prevailing climate was semi-arid to very arid with marked intervals of high water availability. Carbon stable isotope data from organic matter and paleosols suggest that both the soil productivity and actual evapotranspiration were very low, corresponding to arid conditions. Histological analysis of pareiasaur bones shows evidence of active metabolism and reveals distinct growth marks. These interruptions of bone formation are indicative of growth rhythms, and are considered as markers for contrasting seasonality or episodic climate events. The macrofossil floras have low diversity and represent gymnosperm-dominated woodlands. Most notable are ovuliferous dwarf shoots of voltzian conifers, and a 25-m long tree trunk with irregularly positioned branch scars. The combined biological and physical evidence suggests that the Moradi Formation was deposited under a generally arid climate with recurring periods of water abundance, allowing for a well-established ground water-dependent ecosystem. With respect to its environment, this system is comparable with modern ecosystems such as the southern African Namib Desert and the Lake Eyre Basin in Australia, which are discussed as modern analogues.
Upper Permian and Lower Triassic palaeosols from northeastern Tethyan localities exposed within the Bogda Mountains, NW China, provide a wealth of information regarding long-term palaeoclimatic and palaeoenvironmental variations.... more
Upper Permian and Lower Triassic palaeosols from northeastern Tethyan localities exposed within the Bogda Mountains, NW China, provide a wealth of information regarding long-term palaeoclimatic and palaeoenvironmental variations. Wuchiapingian palaeosols are characterized by intense redoximorphy, accumulation of vascular plant matter, accumulation of clay minerals and Fe-oxides, slickensides, and clastic dikes, suggesting a soil moisture regime that ranged from perennially wet to distinctly seasonal in soil moisture budget. Changsinghian to early Induan palaeosols include subsurface accumulations of clay and carbonate as well as surficial accumulations of organic matter, indicative of sub-humid to sub-arid soil moisture and variable soil moisture regimes. Induan to Olenekian palaeosols contain pedogenic CaCO3 accumulations and gypsum pseudomorphs, indicating a drier environment characterized by net soil moisture deficiency. Elemental composition of palaeosol matrix was used to estimate palaeoprecipitation through the chemical index of alteration minus Potassium (CIA-K) proxy. Estimates from various Wuchiapingian strata indicate relatively stable palaeoprecipitation. During the late Changsinghian and early Induan, palaeoprecipitation appears to have decreased from 1100 to 230 (±180)mm/year over less than 100 m of vertical stratigraphic section. In the Induan and Olenekian, palaeoprecipitation appears much less stable than in Wuchiapingian, with values vacillating from 290 to 1014 mm/year. The transition to a relatively unstable precipitation state coincides generally with the Permian–Triassic boundary, and may reflect climatic disturbances associated with the end-Permian extinction event in addition to altered atmospheric circulation patterns resulting from regional tectonics, moisture availability, and expansion of the subtropical high pressure belt.
ABSTRACT
Mineralogic, chemical, and oxygen and hydrogen isotope compositions of 15 different phyllosilicate samples from Permo–Pennsylvanian-age paleosols of the eastern shelf of the Midland basin of Texas and the southern Anadarko basin ...
Research Interests:
The 18 O values of pedogenic calcites, phyllosilicates, and iron (oxyhydr)oxides from fossil soils throughout the southwestern United States show systematic paleolatitudinal and temporal trends that indicate a significant change in ...
Research Interests:
Paleosols are ancient soils that have been incorporated into the geological record. Soils form in response to interactions among the lithosphere, hydrosphere, biosphere, and atmosphere, so paleosols potentially record physical,... more
Paleosols are ancient soils that have been incorporated into the geological record. Soils form in response to interactions among the lithosphere, hydrosphere, biosphere, and atmosphere, so paleosols potentially record physical, biological, and chemical information about past conditions near Earth’s surface. As a result, paleosols are an important resource for terrestrial environmental and climatic reconstructions. Long-standing paleosol research topics include morphology, classification, and clay mineralogy, all of which provide information about pedogenic processes and local paleoenvironments. Paleosols are also used to infer processes involved in the development of
stratigraphic architecture and basin evolution. Recent paleosol research has introduced semiquantitative and quantitative measures for environmental and chronometric reconstructions that provide insight intomajor regional to global changes in temperature, precipitation, and atmospheric pCO2. These
new proxies focus on morphological and chemical transfer functions and stable isotope geochemistry to provide estimates of precipitation, temperature, pCO2, and productivity, as well as chronometric estimates of mineral crystallization in deep-time pedogenic systems. Looking forward, consensus must be reached on terminology that most effectively communicates paleosol characteristics and implies important processes. Proxy development will continue to improve as data sets become available across greater ranges of environments and timescales.
Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100... more
Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100 Triassic pedogenic carbonate nodules and associated organic matter. The d13C of carbonate ranges from -3.29 per mil to -10.56 per mil. The d13C of organic matter ranges from -21.07 per mil to -24.24 per mil. The Hydrogen and Oxygen indices and TOC values indicate that the best preserved organic matter samples yield the most negative d13C values. Reconstructed pCO2 levels were around 1000 ppm V in the early to mid- Triassic and increased to around 2000 ppm V later in the Triassic. This maximum is followed by a fall in pCO2 in the late Triassic. This previously undocumented rapid change in paleo-CO2 levels likely accompanied the evolution of mammal-like reptiles to true dinosaurs as well as rapid climate change.
Research Interests:
Research Interests:
Research Interests:
Research Interests:
Fourteen soil profiles from California were collected in order to measure the d13C of coexisting soil calcite and organic matter. Thirteen of the profiles contained a measurable amount of calcite ranging from 0.04 to 54.6 wt %. Soil... more
Fourteen soil profiles from California were collected in order to measure the d13C of coexisting soil calcite and organic matter. Thirteen of the profiles contained a measurable amount of calcite ranging from 0.04 to 54.6 wt %. Soil calcite d13CPDB (d13C value vs. the calcite standard Peedee Belemnite) values range from 14.4 to 1.3‰, whereas organic matter d13CPDB values range from 24.0 to 27.7‰. The hydrology of these profiles is divided into two broad groups: (1) soils characterized by gravity-driven, piston-type vertical flow through the profile and (2) soils affected by groundwater within the profile at depths where calcite is present. The difference between soil calcite and organic matter d13CPDB
values, D13Ccc-om, is smaller in profiles affected by groundwater saturation as well as most Vertisols and may be a product of waterlogging. The larger D13Ccc-om values in soils with gravity-driven flow are consistent with open-system mixing of tropospheric CO2 and CO2 derived from in situ oxidation of soil organic matter with mean soil PCO2 values potentially in excess of ~20,000 ppmV at the time of calcite crystallization. There is a correlation between estimates of soil PCO2 and a value termed ‘‘EPPT-U’’ (kJm2/yr) among the soil profiles characterized by gravity-driven flow. EPPT-U is the energy flux through the soil during periods of soil moisture utilization, and it is the product of water mass and temperature in the profile during the growing season. Thus, soils with high water-holding capacity/storage and/or low/high growing season temperature may form soil calcite in the presence of high soil PCO2, and vice versa. The results of this research have important implications for reconstructions of paleoclimate from stable carbon isotopes of
calcareous paleosol profiles.
Investigation of the palaeoclimatic conditions associated with Upper Jurassic strata in Portugal and comparison with published palaeoclimate reconstructions of the Upper Jurassic Morrison Formation in western North America provide... more
Investigation of the palaeoclimatic conditions associated with Upper Jurassic strata in Portugal and comparison with published palaeoclimate reconstructions of the Upper Jurassic Morrison Formation in western North America provide important insights into the conditions that allowed two of the richest terrestrial faunas of this period to flourish. Geochemical analyses and observations of palaeosol morphology in the informally named Upper Jurassic Lourinhã formation of western Portugal indicate warm and wet palaeoclimatic conditions with strongly seasonal precipitation patterns. Palaeosol profiles are dominated by carbonate accumulations and abundant shrink-swell (vertic) features that are both indicative of seasonal variation in moisture availability. The δ18OSMOW and δDSMOW values of phyllosilicates sampled from palaeosol profiles range from +22.4‰ to +22.7‰ and -53.0‰ to -37.3‰, respectively. These isotope values correspond to temperatures of formation between 32°C and 39°C ± 3°, with an average of 36°C, which suggest surface temperatures between 27°C and 34°C (average 31°C). On average, these surface temperature estimates are 1°C higher than the highest summer temperatures modelled for Late Jurassic Iberia using general circulation models. Elemental analysis of matrix material from palaeosol B-horizons provides proxy (chemical index of alteration minus potassium) estimates of mean annual precipitation ranging from 766 to 1394 mm/year, with an average of approximately 1100 mm/year. Palaeoclimatic conditions during deposition of the Lourinhã formation are broadly similar to those inferred for the Morrison Formation, except somewhat wetter. Seasonal variation in moisture availability does not seem to have negatively impacted the ability of these environments to support rich and relatively abundant faunas. The similar climate between these two Late Jurassic terrestrial ecosystems is probably one of the factors which explains the similarity of their vertebrate faunas.

And 38 more

2008.04 Abstract: The stratigraphic and regional distributions of paleosol morphology in latest Pennsylvanian through Early Permian strata in Colorado, Utah, Arizona, New Mexico, Texas, and Oklahoma are presented in this paper. This... more
2008.04 Abstract: The stratigraphic and regional distributions of paleosol morphology in latest Pennsylvanian through Early Permian strata in Colorado, Utah, Arizona, New Mexico, Texas, and Oklahoma are presented in this paper. This regional extent corresponds to a paleolatitudinal gradient spanning approximately 5 degrees S to 10 degrees N. Morphological trends from this region delineate significant and systematic temporal and spatial changes in Permian-Carboniferous paleoenvironment and paleoclimate. The inferred latest Pennsylvanian (Virgilian) through early Early Permian environmental pattern is complex, but it indicates persistently dry, semiarid to arid conditions in Colorado, Utah, and Arizona, at paleolatitudes north of approximately 2 degrees N, whereas lower paleolatitude (approximately 2 degrees S to 2 degrees N) tropical regions in New Mexico exhibit a stepwise shift from subhumid to semiarid and variably seasonal conditions throughout late Pennsylvanian and the first half of Early Permian (Virgilian through Wolfcampian) time, followed by a subsequent shift to more arid conditions during the latter part of the Early Permian (Leonardian). Notably, strata from the southernmost paleosites, in Texas and Oklahoma, exhibit the most significant and abrupt climate changes through this period; they show a rapid transition from nearly ever-wet latest Pennsylvanian climate (at approximately 5 degrees S) to drier and seasonal climate across the Permian-Carboniferous system boundary, and finally to arid and seasonal climate by Leonardian time (at approximately 2-4 degrees N). The inferred climate patterns show no robust long-term correlation with the high-latitude Gondwanan records of glaciation. Rather, the long-term record of Permian-Pennsylvanian climate indicators from the southwestern United States is most simply explained by an approximately 8 degrees northward tectonic drift through (essentially) static climate zones over western tropical Pangea during the interval of study. However, the relatively rapid perturbations to climate recorded by these pedogenic archives appear to be too rapid for tectonic forces and might correspond to changes in climate drivers, such as atmospheric pCO (sub 2) , atmospheric circulation, and glacial-interglacial cycles.