[go: up one dir, main page]

Jump to content

9000 (number)

From Simple English Wikipedia, the free encyclopedia
← 8999 9000 9001 →
Cardinalnine thousand
Ordinal9000th
(nine thousandth)
Factorization23× 32× 53
Greek numeral,Θ´
Roman numeralMX, or IX
Unicode symbol(s)MX, mx, IX, ix
Binary100011001010002
Ternary1101001003
Quaternary20302204
Quinary2420005
Senary1054006
Octal214508
Duodecimal526012
Hexadecimal232816
Vigesimal12A020
Base 366Y036
ArmenianՔ

9000 (nine thousand) is the natural number after 8999 and before 9001.

Selected numbers: 9001–9999

[change | change source]

9001 to 9099

[change | change source]

9100 to 9199

[change | change source]

9200 to 9299

[change | change source]

9300 to 9399

[change | change source]

9400 to 9499

[change | change source]

9500 to 9599

[change | change source]
  • 9511 - prime number
  • 9521 - prime number
  • 9533 - prime number
  • 9539 – Sophie Germain prime, super-prime
  • 9551 – first prime followed by as many as 35 consecutive composite numbers
  • 9587 – safe prime, follows 35 consecutive composite numbers
  • 9591 – triangular number
  • 9592 - amount of prime numbers under 100,000


9600 to 9699

[change | change source]
  • 9601Proth prime
  • 9604 = 982
  • 9619super-prime
  • 9629 – Sophie Germain prime
  • 9647 – centered heptagonal number
  • 9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
  • 9689 – Sophie Germain prime
  • 9699 – nonagonal number

9700 to 9799

[change | change source]
  • 9721 – prime of the form 2p-1
  • 9730 – triangular number
  • 9739super-prime
  • 9743 – safe prime
  • 9791 – Sophie Germain prime

9800 to 9899

[change | change source]

9900 to 9999

[change | change source]
  • 9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[13]
  • 9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[14]
  • 9923super-prime, probably smallest certainly executable prime number on x86 MS-DOS[15]
  • 9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
  • 9973 – super-prime
  • 9999Kaprekar number, repdigit

Prime numbers

[change | change source]

There are 112 prime numbers between 9000 and 10000:[16][17]

9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973

References

[change | change source]
  1. Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers: n^3 + (n+1)^3.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "Sequence A002559". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime) of the form A019328(r)/gcd(A019328(r),r) in order (periods r are given in A051627).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "Sequence A002411". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "Sequence A000292". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. Brunner, Amy; Caldwell, Chris K.; Krywaruczenko, Daniel & Lownsdale, Chris (2009). "GENERALIZED SIERPIŃSKI NUMBERS TO BASE b" (PDF). 数理解析研究所講究録 [Notes from the Institute of Mathematical Analysis (in, New Aspects of Analytic Number Theory)]. 1639. Kyoto: RIMS: 69–79. hdl:2433/140555. S2CID 38654417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Sloane, N. J. A. (ed.). "Sequence A005900". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. Sloane, N. J. A. (ed.). "Sequence A006037 (Weird numbers: abundant (A005101) but not pseudoperfect (A005835).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers (cf. A000032).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. Sloane, N. J. A. (ed.). "Sequence A000330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  13. "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  14. Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  15. An Executable Prime Number?, archived from the original on 2010-02-10
  16. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.