Skip to main content
In recent years, very high-resolution satellite remote-sensing tools have been progressively used in archaeological prospecting to acquire information and improve documentation. Satellite remote sensing has also benefited from technical... more
In recent years, very high-resolution satellite remote-sensing tools have been progressively used in archaeological prospecting to acquire information and improve documentation. Satellite remote sensing has also benefited from technical improvements, including better spectral and spatial resolution of sensors, which have facilitated the detection and discovery of unknown archaeological areas. This paper focuses on investigations conducted using multi-spectral satellite remote-sensing data of the ancient canal systems of the Wadi el Melah Valley (WMV) in southern Tunisia. The area used to be part of a huge military defense system along the desert border. This paper describes the use of GeoEye-1 and Ziyuan-3 satellite remote-sensing data to reveal ancient Roman canals, which were part of an advanced hydraulic system devised to capture runoff water and cope with the lack of water in the area. In general, this research provides new information on some essential sections of the Roman wal...
The Han Dynasty Great Wall (GH), one of the largest and most significant ancient defense projects in the whole of northern China, has been studied increasingly not only because it provides important information about the diplomatic and... more
The Han Dynasty Great Wall (GH), one of the largest and most significant ancient defense projects in the whole of northern China, has been studied increasingly not only because it provides important information about the diplomatic and military strategies of the Han Empire (206 B.C.–220 A.D.), but also because it is considered to be a cultural and national symbol of modern China as well as a valuable archaeological monument. Thus, it is crucial to obtain the spatial pattern and preservation situation of the GH for next-step archaeological analysis and conservation management. Nowadays, remote sensing specialists and archaeologists have given priority to manual visualization and a (semi-) automatic extraction approach is lacking. Based on the very high-resolution (VHR) satellite remote sensing imagery, this paper aims to identify automatically the archaeological features of the GH located in ancient Dunhuang, northwest China. Gaofen-1 (GF-1) data were first processed and enhanced aft...
The increasing availability of multiplatform, multiband, very-high-resolution (VHR) satellite synthetic aperture radar (SAR) data has attracted the attention of a growing number of scientists and archeologists. In particular, over the... more
The increasing availability of multiplatform, multiband, very-high-resolution (VHR) satellite synthetic aperture radar (SAR) data has attracted the attention of a growing number of scientists and archeologists. In particular, over the last two decades, archeological research has benefited from SAR development mainly due to its unique ability to acquire scenes both at night and during the day under all weather conditions, its penetration capability, and the provided polarimetric and interferometric information. This paper explored the potential of a novel method (nonlocal (NL)-SAR) using TerraSAR-X (TSX) and Constellation of Small Satellites for Mediterranean Basin Observation (COSMO)-SkyMed (CSK) data to detect buried archeological remains in steep, rugged terrain. In this investigation, two test sites were selected in southern Tunisia, home to some of the most valuable and well-preserved limes from the Roman Empire. To enhance the subtle signals linked to archeological features, th...
Google Earth (GE), a large Earth-observation data-based geographical information computer application, is an intuitive three-dimensional virtual globe. It enables archaeologists around the world to communicate and share their multisource... more
Google Earth (GE), a large Earth-observation data-based geographical information computer application, is an intuitive three-dimensional virtual globe. It enables archaeologists around the world to communicate and share their multisource data and research findings. Different from traditional geographical information systems (GIS), GE is free and easy to use in data collection, exploration, and visualization. In the past decade, many peer-reviewed articles on the use of GE in the archaeological cultural heritage (ACH) research field have been published. Most of these concern specific ACH investigations with a wide spatial coverage. GE can often be used to survey and document ACH so that both skilled archaeologists and the public can more easily and intuitively understand the results. Based on geographical tools and multi-temporal very high-resolution (VHR) satellite imagery, GE has been shown to provide spatio-temporal change information that has a bearing on the physical, environmental, and geographical character of ACH. In this review, in order to discuss the huge potential of GE, a comprehensive review of GE and its applications to ACH in the published scientific literature is first presented; case studies in five main research fields demonstrating how GE can be deployed as a key tool for studying ACH are then described. The selected case studies illustrate how GE can be used effectively to investigate ACH at multiple scales, discover new archaeological sites in remote regions, monitor historical sites, and assess damage in areas of conflict, and promote virtual tourism. These examples form the basis for highlighting current trends in remote sensing archaeology based on the GE platform, which could provide access to a low-cost and easy-to-use tool for communicating and sharing ACH geospatial data more effectively to the general public in the era of Digital Earth. Finally, a discussion of the merits and limitations of GE is presented along with conclusions and remaining challenges.
Archaeological and cultural heritage (ACH), one of the core carriers of cultural diversity on our planet, has a direct bearing on the sustainable development of mankind. Documenting and protecting ACH is the common responsibility and duty... more
Archaeological and cultural heritage (ACH), one of the core carriers of cultural diversity on our planet, has a direct bearing on the sustainable development of mankind. Documenting and protecting ACH is the common responsibility and duty of all humanity. It is governed by UNESCO along with the scientific communities that foster and encourage the use of advanced non-invasive techniques and methods for promoting scientific research into ACH and conservation of ACH sites. The use of remote sensing, a non-destructive tool, is increasingly popular by specialists around the world as it allows fast prospecting and mapping at multiple scales, rapid analysis of multisource datasets, and dynamic monitoring of ACH sites and their surrounding environments. The cost of using remote sensing is lower or even zero in practical applications. In this review, in order to discuss the advantages of airborne and spaceborne remote sensing (ASRS), the principles that make passive (photography, multispectral and hyperspectral) and active (synthetic aperture radar (SAR) and light detection and ranging radar (LiDAR)) imaging techniques suitable for ACH applications are first summarized and pointed out; a review of ASRS and the methodologies used over the past century is then presented together with relevant highlights from well-known research projects. Selected case studies from Mediterranean regions to East Asia illustrate how ASRS can be used effectively to investigate and understand archaeological features at multiple-scales and to monitor and assess the conservation status of cultural heritage sites in the context of sustainable development. An in-depth discussion on the limitations of ASRS and associated remaining challenges is presented along with conclusions and a look at future trends.
The Han Dynasty Great Wall (GH), one of the largest and most significant ancient defense projects in the whole of northern China, has been studied increasingly not only because it provides important information about the diplomatic and... more
The Han Dynasty Great Wall (GH), one of the largest and most significant ancient defense projects in the whole of northern China, has been studied increasingly not only because it provides important information about the diplomatic and military strategies of the Han Empire (206 B.C.-220 A.D.), but also because it is considered to be a cultural and national symbol of modern China as well as a valuable archaeological monument. Thus, it is crucial to obtain the spatial pattern and preservation situation of the GH for next-step archaeological analysis and conservation management. Nowadays, remote sensing specialists and archaeologists have given priority to manual visualization and a (semi-) automatic extraction approach is lacking. Based on the very high-resolution (VHR) satellite remote sensing imagery, this paper aims to identify automatically the archaeological features of the GH located in ancient Dunhuang, northwest China. Gaofen-1 (GF-1) data were first processed and enhanced after image correction and mathematical morphology, and the M-statistic was then used to analyze the spectral characteristics of GF-1 multispectral (MS) data. In addition, based on GF-1 panchromatic (PAN) data, an auto-identification method that integrates an improved Otsu segmentation algorithm with a Linear Hough Transform (LHT) is proposed. Finally, by making a comparison with visual extraction results, the proposed method was assessed qualitatively and semi-quantitatively to have an accuracy of 80% for the homogenous background in Dunhuang. These automatic identification results could be used to map and evaluate the preservation state of the GH in Dunhuang. Also, the proposed automatic approach was applied to identify similar linear traces of other generations of the Great Wall of China (Western Xia Dynasty (581 A.D.-618 A.D.) and Ming Dynasty (1368 A.D.-1644 A.D.)) in various geographic regions. Moreover, the results indicate that the computer-based automatic identification has great potential in archaeological research, and the proposed method can be generalized and applied to monitor and evaluate the state of preservation of the Great Wall of China in the future.
In recent years, very high-resolution satellite remote-sensing tools have been progressively used in archaeological prospecting to acquire information and improve documentation. Satellite remote sensing has also benefited from technical... more
In recent years, very high-resolution satellite remote-sensing tools have been progressively used in archaeological prospecting to acquire information and improve documentation. Satellite remote sensing has also benefited from technical improvements, including better spectral and spatial resolution of sensors, which have facilitated the detection and discovery of unknown archaeological areas. This paper focuses on investigations conducted using multi-spectral satellite remote-sensing data of the ancient canal systems of the Wadi el Melah Valley (WMV) in southern Tunisia. The area used to be part of a huge military defense system along the desert border. This paper describes the use of GeoEye-1 and Ziyuan-3 satellite remote-sensing data to reveal ancient Roman canals, which were part of an advanced hydraulic system devised to capture runoff water and cope with the lack of water in the area. In general, this research provides new information on some essential sections of the Roman walled defense system Limes (Fossatum) in the southern part of the empire, where we study previously undetected sites.
Southern Tunisia is one of the most significant areas of historical and archaeological interest as, since the Roman period, it has played a key role as a land bridge controlling the passage from the Saharan plain to plateaus and to the... more
Southern Tunisia is one of the most significant areas of historical and archaeological interest as, since the Roman period, it has played a key role as a land bridge controlling the passage from the Saharan plain to plateaus and to the north of the mountain range between Chebika and Metlaoui. Because of the difficult geography, the investigation of ancient sites in this region is not easy and, therefore, satellite-based investigation can play an important role in the detection and documentation of archaeological sites. In this study, we combined high-resolution remote sensing (RS) imagery with in situ investigations to assess the suspected archaeological sites detected using satellite data and historical documentation. The suspected sites were confirmed according to the geometric features of the sites as they appeared in the remotely sensed imagery these sites had not been detected during earlier field investigations. In particular, we aimed to use 1-m spatial resolution WorldView-2 (WV2) imagery of the Wadi El-MelahValley (WMV) in Gafsa (also named Capsa). The satellite data were processed using statistical analysis and unsupervised classification.WV2 satellite imagery of WMV, Southwestern Tunisia, was processed within ArcGIS 10.2 to identify spatial features linked to the sites. The study outlines three different feature-extraction methods (GIS-based, unsupervised classification-based and statistical analysis-based). The satellite-based analysis and archaeological records were evaluated by RS and GIS prospecting in the area of the field survey to confirm the new discoveries. The results of remotely sensed data combined with field survey enabled us to reconstruct the military defense system consisting of is a linear defensive structure (limes) and forts related to the Imperial Roman period. Taken together, the results of our investigations provide new insights into some important sections of the Roman limes in the southern part of the empire. Other concealed remains are still to be found and explored.