Skip to main content
  • Evans Vusani Mauda is a Postdoctoral Fellow in the Centre for Biological Control, Department of Zoology & Entomology ... moreedit
  • Dr Grant D Martin, Dr Iain Patersonedit
The efficacy of an existing cold disinfestation postharvest treatment targeting Ceratitis capitata (Wiedemann) in citrus was determined for the marula fly, Ceratitis cosyra (Walker). The cold tolerances of C. capitata and C. cosyra were... more
The efficacy of an existing cold disinfestation postharvest treatment targeting Ceratitis capitata (Wiedemann) in citrus was determined for the marula fly, Ceratitis cosyra (Walker). The cold tolerances of C. capitata and C. cosyra were first quantified in artificial diet at 3.5 °C at different exposure periods for up to 18 days. Ceratitis capitata was found to be more cold tolerant than C. cosyra. At 3.5 °C, the duration to achieve 99.9968% mortality was calculated to be 11.57 days for C. capitata and 9.10 days for C. cosyra. Under an existing C. capitata cold treatment schedule at 1 °C for 14 days, the conditions required for complete mortality of the third larval stage of C. cosyra in orange, Citrus sinensis (L.) Osbeck cv. Valencia, were then determined. No survivors of C. cosyra in oranges were recorded beyond 11 days of cold treatment at 1 °C. The efficacy of this C. capitata treatment for disinfestation of C. cosyra was thereafter confirmed in large scale trials in Valencia oranges. In the large-scale trial at the lowest mean temperature of 1.19 °C for 14 days, there were no survivors from a total of 85 490 treated C. cosyra third instars in oranges. Since C. capitata was shown to be more cold tolerant than C. cosyra and a large scale test demonstrated at least 99.9965% efficacy after 14 days at 1.19 °C, compared with the established effective C. capitata cold treatment of 14 days at 1.11 °C, cold disinfestation treatments for C. capitata should be at least equally effective against C. cosyra.
Various ground-dwelling invertebrates respond differently to changes in the structure of the landscape. Implementation of a mechanistic approach to landscape ecology is essential to deriving generalizations about how spatial heterogeneity... more
Various ground-dwelling invertebrates respond differently to changes in the structure of the landscape. Implementation of a mechanistic approach to landscape ecology is essential to deriving generalizations about how spatial heterogeneity influences ecological system. In the study key questions are asked such as, what is the biodiversity of the area? And what are the threats to biodiversity in the area? We aimed to investigate the response of ground-dwelling insects assemblages to Eucalyptus (Bluegum) plantations and Avocado orchards in the western Soutpansberg. We also aimed to develop strategies to maintain, manage and possibly restore the degraded landscapes in the Soutpansberg Mountain using invertebrates as surrogate species to monitor these changes. The study area was Bluegumspoort, the Soutpansberg Limpopo Province, South Africa. Four sites representative of the landscape mosaic where located for the study. The first site located was an Avocado orchard, the second site a Bluegum plantation, third site located was a pristine savanna mist belt and the fourth site a thicket located on Lokovhela. Hand collecting, observations and pitfalls where used to trap and preserve ground-dwelling darkling beetles, (Tenebrionidae), dung beetles (Scarabaeidae), ground beetles (Carabidae) and snout beetles ( Curculionidae) at alternating stretches of diurnal and nocturnal sampling. Tenebrionidae constitute the greatest species richness followed by the Scarabaeidae.
Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that... more
Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all ta...
Lycium ferocissimum Miers (Solanaceae) is an indigenous shrub in South Africa but has become invasive in several countries including Australia, where chemical and mechanical control methods have proved costly and unsustainable. In... more
Lycium ferocissimum Miers (Solanaceae) is an indigenous shrub in South Africa but has become invasive in several countries including Australia, where chemical and mechanical control methods have proved costly and unsustainable. In Australia, biological control is being considered as a management option, but the herbivorous insects associated with the plant in its native range are not well known. The aim of this study was to survey the phytophagous insects associated with L. ferocissimum in South Africa and prioritise promising biological control agents. In South Africa, the plant occurs in two geographically distinct areas, the Eastern and Western Cape provinces. Surveys for phytophagous insects on L. ferocissimum were carried out repeatedly over a two-year period in these two regions. The number of insect species found in the Eastern Cape Province (55) was higher than that in the Western Cape Province (41), but insect diversity based on Shannon indices was highest in the Western Cape Province. Indicator species analysis revealed eight insect herbivore species driving the differences in the herbivore communities between the two provinces. Based on insect distribution, abundance, feeding preference and available literature, three species were prioritised as potential biological control agents. These include the leaf-chewing beetles Cassida distinguenda Spaeth (Chrysomelidae) and Cleta eckloni Mulsant (Coccinel-lidae) and the leaf-mining weevil Neoplatygaster serietuberculata Gyllenhal (Curculionidae).
Africa's savannas are undergoing rapid conversion from rangelands into villages and croplands. Despite limited research, and evidence of deleterious effects to biodiversity, international organisations have earmarked this system... more
Africa's savannas are undergoing rapid conversion from rangelands into villages and croplands. Despite limited research, and evidence of deleterious effects to biodiversity, international organisations have earmarked this system for cropland. Invertebrates, and ants in particular, are sensitive indicators of habitat fragmentation, and contribute to ecosystem services at a range of scales. We investigated how rangelands, villages and croplands differ in ant species and functional diversity, and assemblage composition. We sampled ants using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and village) in northern South African savannas. We investigated the impact of landuse, season , and multiple soil and vegetation habitat variables on ant species diversity, assemblages and functional diversity. Rangelands had the greatest ant species richness, particularly in the wet season. Richness declined with increasing soil clay content. Ant assemblages were distinctly different between landuse types. Rangeland harboured the
Lycium ferocissimum (African boxthorn) is a Weed of National Significance in Australia. Biological control may have potential to manage this weed, but taxonomic uncertainty needs to be addressed first to facilitate searches for potential... more
Lycium ferocissimum (African boxthorn) is a Weed of National Significance in Australia. Biological control may have potential to manage this weed, but taxonomic uncertainty needs to be addressed first to facilitate searches for potential agents. We sampled putative L. ferocissimum (i.e. tentatively identified morphologically in the field) across its native range in South Africa and introduced range in Australia. Morphometric and genetic analyses were conducted to confirm the species identity of these samples, and to assess morphological and genetic variation across both ranges. All samples collected in Australia were confirmed as L. ferocissimum, with no evidence of hybridisation with any other Lycium species. Nuclear and chloroplast genetic diversity within L. ferocissimum across both South Africa and Australia was low, with no evidence of genetic structure. One of the two common chloroplast haplotypes found across Australia was found at only two sites in South Africa, both near Cape Town, suggesting that the Australian lineage may have originated from this region. Ten samples from South Africa putatively identified in the field as L. ferocissimum were genetically characterised as different (unidentified) Lycium species. Our morphometric analyses across different Lycium species in South Africa did not identify any leaf or floral characteristics unique to L. ferocissimum, and thus morphological identification of the latter species in its native range may remain problematic. To ensure the correct Lycium species is surveyed for candidate biological control agents we suggest that individuals should be permanently tagged and putative morphological determinations supplemented with genetic analyses to confirm species identity.
Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that... more
Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes.
Africa's savannas are undergoing rapid conversion from rangelands into villages and croplands. Despite limited research, and evidence of deleterious effects to biodiversity, international organisations have earmarked this system for... more
Africa's savannas are undergoing rapid conversion from rangelands into villages and croplands. Despite limited research, and evidence of deleterious effects to biodiversity, international organisations have earmarked this system for cropland. Invertebrates, and ants in particular, are sensitive indicators of habitat fragmentation, and contribute to ecosystem services at a range of scales. We investigated how rangelands, villages and croplands differ in ant species and functional diversity, and assemblage composition. We sampled ants using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and village) in northern South African savannas. We investigated the impact of landuse, season , and multiple soil and vegetation habitat variables on ant species diversity, assemblages and functional diversity. Rangelands had the greatest ant species richness, particularly in the wet season. Richness declined with increasing soil clay content. Ant assemblages were distinctly different between landuse types. Rangeland harboured the
Research Interests:
Predators play a disproportionately positive role in ensuring integrity of food webs, influencing ecological processes and services upon which humans rely. Predators tend to be amongst the first species to be affected by anthropogenic... more
Predators play a disproportionately positive role in ensuring integrity of food webs, influencing ecological processes and services upon which humans rely. Predators tend to be amongst the first species to be affected by anthropogenic disturbance, however. Spiders impact invertebrate population dynamics and stabilise food webs in natural and agricultural systems (potentially mitigating against crop pests and reduced yields). Africa's savannas are undergoing continent-wide conversion from low-density rangelands to villages and croplands, as human populations burgeon. Despite limited research , and evidence of deleterious impacts to biodiversity, African savannas are earmarked by prominent international organisations for conversion to cropland. Given the key role of spiders in food webs, they can have beneficial impacts in agroecosystems. Furthermore, functional diversity (FD) reflects ecosystem pattern and processes better than species diversity, so we evaluated impacts of large-scale landuse change on both species richness and FD. We surveyed spiders using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and villages) in South African savannas, investigating effects of landuse, season, and habitat variables on spider species diversity and FD. Species richness was lowest in villages. FD was lowest in cropland, however, with reduced representation of traits associated with hunting of larger invertebrates. Furthermore, there were fewer specialists in croplands. These findings suggest that even when cropland does not impact species diversity, loss of FD can still occur. As savanna systems transform,
Research Interests:
Predators play a disproportionately positive role in ensuring integrity of food webs, influencing ecological processes and services upon which humans rely. Predators tend to be amongst the first species to be affected by anthropogenic... more
Predators play a disproportionately positive role in ensuring integrity of food webs, influencing ecological processes and services upon which humans rely. Predators tend to be amongst the first species to be affected by anthropogenic disturbance, however. Spiders impact invertebrate population dynamics and stabilise food webs in natural and agricultural systems (potentially mitigating against crop pests and reduced yields). Africa’s savannas are undergoing continent-wide conversion from low-density rangelands to villages and croplands, as human populations burgeon. Despite limited research, and evidence of deleterious impacts to biodiversity, African savannas are earmarked by prominent international organisations for conversion to cropland. Given the key role of spiders in food webs, they can have beneficial impacts in agroecosystems. Furthermore, functional diversity (FD) reflects ecosystem pattern and processes better than species diversity, so we evaluated impacts of large-scale landuse change on both species richness and FD. We surveyed spiders using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and villages) in South African savannas, investigating effects of landuse, season, and habitat variables on spider species diversity and FD. Species richness was lowest in villages. FD was lowest in cropland, however, with reduced representation of traits associated with hunting of larger invertebrates. Furthermore, there were fewer specialists in croplands. These findings suggest that even when cropland does not impact species diversity, loss of FD can still occur. As savanna systems transform, impacts on invertebrate population dynamics may increase the possibility of a breakdown in pest control in natural and agricultural systems, given changes in FD of invertebrate predators.
Research Interests: