Biomolecular interaction analysis mass spectrometry (BIA/MS) is a two-dimensional analytical technique that quantitatively and qualitatively detects analytes of interests. In the first dimension, surface plasmon resonance (SPR) is utilized for detection of biomolecules in their native environment. Because SPR detection is non-destructive, analyte(s) retained on the SPR-active sensor surface can be analyzed in a second dimension using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The qualitative nature of the MALDI-TOF MS analysis complements the quantitative character of SPR sensing and overcomes the shortcomings of the SPR detection stemming from the inability to differentiate and characterize multi-protein complexes and non-specific binding. In this work, the benefit of performing MS analysis following SPR sensing is established. Retrieval and detection of four markers present in biological fluids (cystatin C, beta-2-microglobulin, urinary protein 1 and retinol binding protein) was explored to demonstrate the effectiveness of BIA/MS in simultaneous detection of clinically related biomarkers and delineation of non-specific binding. Furthermore, the BIA/MS limit of detection at very low SPR responses was investigated. Finally, detection of in-vivo assembled protein complexes was achieved for the first time using BIA/MS.