Rentgenografia strukturalna
Rentgenografia strukturalna – technika analityczna używana w krystalografii i chemii. W krystalografii jest stosowana w celu ustalenia wymiarów i geometrii komórki elementarnej tworzącej daną sieć krystaliczną. W chemii metoda ta umożliwia dokładne ustalenie struktury związków chemicznych tworzących analizowane kryształy.
Zasada działania
edytujW obu przypadkach metoda ta opiera się na rejestracji obrazów dyfrakcyjnych promieni rentgenowskich, powstających na skutek subtelnych interakcji tego promieniowania z chmurami elektronowymi atomów, tworzących analizowany kryształ. Na podstawie rejestracji obrazów dyfrakcyjnych promieniowania X, przechodzącego przez kryształ pod różnymi kątami, korzystając z prawa Bragga, wyznacza się trójwymiarową mapę gęstości elektronowej w komórce elementarnej kryształu. Dalsza, matematyczna analiza tej mapy umożliwia m.in.:
- wyznaczenie pozycji i odległości cząsteczek względem siebie w sieci krystalicznej,
- wyznaczenie położenia poszczególnych atomów względem siebie,
- ustalenie kątów i długości wiązań między atomami,
- ustalenie rozkładu gęstości chmur elektronowych wokół poszczególnych atomów, co umożliwia obliczenie momentu dipolowego wiązań i całych cząsteczek oraz precyzyjne ustalenie natury poszczególnych wiązań,
- ustalenie konfiguracji absolutnej cząsteczek.
Wykonywanie pomiaru
edytujDo wykonania analizy potrzebny jest monokryształ danego związku chemicznego o możliwie jak najbardziej regularnym kształcie i posiadający jak najmniej defektów. Kryształ ten umieszcza się w dyfraktometrze i niekiedy schładza przy pomocy oparów ciekłego azotu do temperatury rzędu 100 K (przy użyciu oparów helu można schłodzić badany materiał do temperatury około 4 K), aby zmniejszyć niedokładności wynikające z termicznych drgań atomów. Kryształ naświetla się silną, monochromatyczną wiązką promieni X, zmieniając stopniowo kąt jej padania na kryształ (poprzez jego obrót) i rejestrując zmiany w obrazie dyfrakcyjnym po przejściu promieni przez kryształ. Obecnie do rejestracji obrazów dyfrakcyjnych używa się kamer CCD – są to matryce CCD chłodzone ogniwami Peltiera do temperatury ok. -60 °C w celu zmniejszenia szumów termicznych. Elementem kamery jest też odpowiedni scyntylator, który pochłania energię promieniowania X, a następnie emituje światło rejestrowane przez matrycę CCD. W przeszłości dane dyfrakcyjne były rejestrowane za pomocą detektora punktowego lub metodami fotograficznymi.
Oprócz próbek monokrystalicznych w rentgenografii strukturalnej bada się także próbki polikrystaliczne (proszki). Do ich badania stosuje się tzw. metodę proszkową – badana próbka jest rozcierana na proszek, a następnie umieszczana w specjalnej kuwecie, mocowanej w uchwycie goniometru dyfraktometru.
Zastosowania
edytujMetoda ta jest podstawowym narzędziem w chemii organicznej, metaloorganicznej i biochemii do ustalania rzeczywistych struktur złożonych związków chemicznych. Metoda ta umożliwiła m.in. wyznaczenie dokładnej struktury mioglobiny przez Maxa Perutza i Johna Cowdery Kendrewa w 1958, za co w roku 1962 otrzymali oni Nagrodę Nobla. Technika ta odegrała też decydującą rolę w ustaleniu struktury podwójnej helisy DNA przez Rosalindę Franklin, Jamesa Watsona i Francisa Cricka.
Nie można jej stosować dla ustalania struktury cząsteczek w fazie gazowej i ciekłej, która często może być inna od tej, jaką przyjmują te same cząsteczki w fazie krystalicznej.
Dane strukturalne pochodzące z rentgenografii są gromadzone w bazach danych, do których dostęp można uzyskać albo poprzez wysłanie do nich określonej liczby własnych danych lub na zasadach komercyjnych. Do najbardziej znanych tego rodzaju baz zalicza się: Protein Databank (makrocząsteczki), Cambridge Structure Database (związki organiczne i metaloorganiczne), ICSD (związki nieorganiczne), oraz otwarta Crystallography Open Database (związki organiczne, nieorganiczne, metaloorganiczne i minerały, z wyłączeniem biopolimerów).
Wady i zalety
edytujWażną i podstawową zaletą rentgenografii strukturalnej jest fakt, że w przeciwieństwie do wielu innych metod jakościowych i ilościowych stosowanych w chemii próbka zwykle nie ulega zniszczeniu w trakcie badania. Oznacza to, że można ją ponownie wykorzystać do innych badań. Ma to duże znaczenie w badaniu unikatowych materiałów np. archeologicznych, zabytkowych lub medycznych, ale także np. hodowanego długo i pieczołowicie kryształu.
Ogromną zaletą tej metody jest możliwość dokładnego ustalenia struktury chemicznej związków chemicznych z niemal absolutną pewnością, umożliwiającą zbudowanie ich rzeczywistego modelu przestrzennego. Żadna inna metoda analityczna nie daje takiej pewności i zawsze zostawia możliwość różnej interpretacji wyników. Jest to również jedyna metoda pozwalająca bezpośrednio określić absolutną konfigurację cząsteczek chiralnych.
Wadą rentgenografii jest konieczność uzyskania czystego monokryształu analizowanego związku chemicznego o wymiarach liniowych rzędu 0,1–1 mm. W przypadku niektórych związków chemicznych wyhodowanie takiego kryształu jest z wielu względów bardzo trudne, a czasem wręcz niemożliwe. Niektóre kryształy mogą być nietrwałe w temperaturze pokojowej, bądź ulegać rozkładowi pod wpływem promieniowania X, co również stwarza pewne ograniczenia.
Inną wadą rentgenografii jest stosunkowo wysoki koszt i czasochłonność wykonywania takiej analizy. Nowoczesny monokrystaliczny dyfraktometr rentgenowski kosztuje w granicach 100–500 tys. €. Pomiar danych dla przeciętnego związku organicznego lub metaloorganicznego zabiera w zależności od urządzenia od kilku godzin do ok. dwóch tygodni. Analiza otrzymanych danych (rozwiązanie struktury związku), jeśli jego struktura jest w miarę prosta, jest dość szybka, natomiast w przypadku bardzo złożonych struktur, np. kryształów białek, czas ten może wynosić nawet kilka tygodni.
W początkowym okresie rozwoju rentgenografii jej najistotniejszą wadą był sam fakt używania silnego promieniowania X, na które narażone były osoby obsługujące dyfraktometry, co mogło u nich wywoływać chorobę popromienną. Aparaty te wymagały stałej obecności operatora, co wielu z nich przypłaciło życiem (m.in. Rosalind Franklin). Współcześnie jednak aparaty te umieszcza się w obudowach tak skonstruowanych, aby nie przepuszczały promieniowania rentgenowskiego i mogą być obsługiwane zdalnie z innego pomieszczenia za pomocą komputera. Jednym z podstawowych zabezpieczeń nowoczesnego dyfraktometru rentgenowskiego jest zestaw czujników uniemożliwiających rozpoczęcie pomiaru w przypadku, gdy jego obudowa jest otwarta.
Bibliografia
edytuj- P. Luger: Rentgenografia strukturalna monokryształów. PWN, 1989.