[go: up one dir, main page]

Huang et al., 2005 - Google Patents

High-performance low-power left-to-right array multiplier design

Huang et al., 2005

Document ID
9830859331952904701
Author
Huang Z
Ercegovac M
Publication year
Publication venue
IEEE Transactions on computers

External Links

Snippet

We present a high-performance low-power design of linear array multipliers based on a combination of the following techniques: signal flow optimization in [3: 2] adder array for partial product reduction, left-to-right leapfrog (LRLF) signal flow, and splitting of the …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5318Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with column wise addition of partial products, e.g. using Wallace tree, Dadda counters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5334Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
    • G06F7/5336Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/499Denomination or exception handling, e.g. rounding, overflow
    • G06F7/49994Sign extension
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • G06F17/505Logic synthesis, e.g. technology mapping, optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/78Power analysis and optimization

Similar Documents

Publication Publication Date Title
Huang et al. High-performance low-power left-to-right array multiplier design
Yeh et al. High-speed Booth encoded parallel multiplier design
Zeydel et al. Energy-efficient design methodologies: High-performance VLSI adders
US20060020655A1 (en) Library of low-cost low-power and high-performance multipliers
Jafarzadehpour et al. New energy‐efficient hybrid wide‐operand adder architecture
Perri et al. Fast low-cost implementation of single-clock-cycle binary comparator
US6275841B1 (en) 1-of-4 multiplier
Srikanth et al. Low power array multiplier using modified full adder
Wang et al. A well-structured modified Booth multiplier design
González et al. Redundant arithmetic, algorithms and implementations
Kuo et al. Low power and high speed multiplier design with row bypassing and parallel architecture
Ahmed et al. Improved designs of digit-by-digit decimal multiplier
Yan et al. An energy-efficient multiplier with fully overlapped partial products reduction and final addition
Baliga et al. Design of high speed adders using CMOS and transmission gates in submicron technology: A comparative study
US7620677B2 (en) 4:2 Carry save adder and 4:2 carry save adding method
Garg et al. A novel high performance reverse carry propagate adder for energy efficient multimedia applications
Mohan et al. An improved implementation of hierarchy array multiplier using CslA adder and full swing GDI logic
Shavit et al. Programmable all-in-one 4× 8-/2× 16-/1× 32-bits dual mode logic multiplier in 16 nm FinFET with semi-automatic flow
Ruiz et al. Self-timed multiplier based on canonical signed-digit recoding
Farooqui et al. Area-time optimal adder with relative placement generator
Vasudev et al. Design and development of 8-bits fast multiplier for low power applications
Anuradha et al. A Novel and Efficient Left-to-Right Binary Adder Architecture for reduced Area and Power Metrics in VLSI Design
Mahmoud et al. Low energy pipelined Dual Base (decimal/binary) Multiplier, DBM, design
Balu et al. High-Performance, Low-Power Booth Multipliers Built from Glitch-Optimized Building Blocks
Anusha et al. A comparative study of high speed CMOS adders using microwind and FPGA