[go: up one dir, main page]

Irisawa et al., 2008 - Google Patents

Ge wire MOSFETs fabricated by three-dimensional Ge condensation technique

Irisawa et al., 2008

Document ID
9717426707419592822
Author
Irisawa T
Numata T
Hirashita N
Moriyama Y
Nakaharai S
Tezuka T
Sugiyama N
Takagi S
Publication year
Publication venue
Thin Solid Films

External Links

Snippet

We propose a novel method to form Ge nano-wire structures by utilizing a three-dimensional (3D) Ge condensation technique. Since this method needs only top-down and Si compatible processes, Ge nano-wire MOSFETs fabricated by this technique are suitable for actual LSI …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes; Multistep manufacturing processes therefor
    • H01L29/43Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268

Similar Documents

Publication Publication Date Title
Vandooren et al. Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction tunnel-FETs
Ngo et al. Fermi‐level pinning free high‐performance 2D CMOS inverter fabricated with van der Waals bottom contacts
US8900538B2 (en) Doped, passivated graphene nanomesh, method of making the doped, passivated graphene nanomesh, and semiconductor device including the doped, passivated graphene nanomesh
Luong et al. Complementary strained Si GAA nanowire TFET inverter with suppressed ambipolarity
JP6671371B2 (en) Tunnel field effect transistor and method of manufacturing the same
CN104854703A (en) Reduced scale resonant tunneling field effect transistor
Kim et al. Specific contact resistivity reduction through Ar plasma-treated TiO 2− x interfacial layer to metal/Ge contact
Knoll et al. Si tunneling transistors with high on-currents and slopes of 50 mV/dec using segregation doped NiSi2 tunnel junctions
CN101523607A (en) Tunnel field effect transistor
Cui et al. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering
Irisawa et al. Ge wire MOSFETs fabricated by three-dimensional Ge condensation technique
JP2011216714A (en) Semiconductor device and method of manufacturing the same
Kaur et al. Hetero-dielectric oxide engineering on dopingless gate all around nanowire MOSFET with Schottky contact source/drain
Trinh et al. Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors
Wang et al. Performance improvement in novel germanium–tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor
Lee et al. Surface Ge-rich p-type SiGe channel tunnel field-effect transistor fabricated by local condensation technique
Itohara et al. p‐Channel and n‐Channel Thin‐Film‐Transistor Operation on Sprayed ZnO Nanoparticle Layers
Junk et al. Enhancing device performance with high electron mobility GeSn materials
Mizuno et al. Quantum confinement effects in doped two-dimensional Si layers: Novel device design for two-dimensional pn-junction structures
Claeys et al. Status and trends in Ge CMOS technology
Knoll et al. Strained Si and SiGe tunnel-FETs and complementary tunnel-FET inverters with minimum gate lengths of 50 nm
Liu et al. Vertical heterojunction Ge0. 92Sn0. 08/Ge gate-all-around nanowire pMOSFETs with NiGeSn contact
Hähnel et al. Germanium vertical tunneling field-effect transistor
Mainali et al. Pseudo-source gated beta-gallium oxide MOSFET
Agarwal et al. Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications