Li et al., 2022 - Google Patents
Mapping Modern JVM Language Code to Analysis-Friendly Graphs: A Study with KotlinLi et al., 2022
- Document ID
- 9649083741788076547
- Author
- Li L
- Liu Y
- Publication year
- Publication venue
- International journal of software engineering and knowledge engineering
External Links
Snippet
Kotlin is a modern JVM language, gaining adoption rapidly and becoming Android official programming language. With its wide usage, the need for code analysis of Kotlin is increasing. Exposing code semantics explicitly with a properly structured format is the first …
- 238000004458 analytical method 0 abstract description 21
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/436—Semantic checking
- G06F8/437—Type checking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/42—Syntactic analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3604—Software analysis for verifying properties of programs
- G06F11/3608—Software analysis for verifying properties of programs using formal methods, e.g. model checking, abstract interpretation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/51—Source to source
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/22—Manipulating or registering by use of codes, e.g. in sequence of text characters
- G06F17/2247—Tree structured documents; Markup, e.g. Standard Generalized Markup Language [SGML], Document Type Definition [DTD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3668—Software testing
- G06F11/3672—Test management
- G06F11/3676—Test management for coverage analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
- G06F8/75—Structural analysis for program understanding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2705—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
- G06F8/74—Reverse engineering; Extracting design information from source code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/35—Model driven
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/362—Software debugging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/34—Graphical or visual programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/36—Software reuse
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/20—Software design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/10—Requirements analysis; Specification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/4421—Execution paradigms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raghothaman et al. | SWIM: synthesizing what I mean: code search and idiomatic snippet synthesis | |
Bashir et al. | UML models consistency management: Guidelines for software quality manager | |
Calegari et al. | Verification of model transformations: A survey of the state-of-the-art | |
Cuadrado et al. | Static analysis of model transformations | |
CN109426615A (en) | Null pointer dereference detection method, system, equipment and the medium of interprocedual | |
Schiewe et al. | Advancing static code analysis with language-agnostic component identification | |
Hansen et al. | State joining and splitting for the symbolic execution of binaries | |
Bousse et al. | Advanced and efficient execution trace management for executable domain-specific modeling languages | |
Amadini et al. | Constraint programming for dynamic symbolic execution of JavaScript | |
Ma et al. | A generic model decomposition technique and its application to the Eclipse modeling framework | |
Zanoni | Data mining techniques for design pattern detection. | |
Li et al. | Mapping Modern JVM Language Code to Analysis-Friendly Graphs: A Study with Kotlin | |
Zhang et al. | A hybrid code representation learning approach for predicting method names | |
Favre et al. | Formal mof metamodeling and tool support | |
Yu et al. | Ontology model-based static analysis on java programs | |
Fritzson et al. | Metamodelica–a symbolic-numeric modelica language and comparison to julia | |
Derrick et al. | Z2SAL: a translation-based model checker for Z | |
Li et al. | A User-extensible Refactoring Tool for Erlang Programs | |
Li et al. | Mapping Modern JVM Language Code to Analysis-friendly Graphs: A Pilot Study with Kotlin. | |
Yusuf et al. | An automatic approach to measure and visualize coupling in object-oriented programs | |
Wu | A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants. | |
Li | An empirical study on bash language usage in Github | |
Pepin | Decomposition of Relations for Multi-model Consistency Preservation | |
Mukhachev | Support Python in RefDetect | |
Zohri Yafi | A Syntactical Reverse Engineering Approach to Fourth Generation Programming Languages Using Formal Methods |