[go: up one dir, main page]

Tong et al., 2010 - Google Patents

A load balancing strategy based on the combination of static and dynamic

Tong et al., 2010

Document ID
964903464221663447
Author
Tong R
Zhu X
Publication year
Publication venue
2010 2nd International Workshop on Database Technology and Applications

External Links

Snippet

Load balance is an important problem of cluster. The core of cluster task distribution is the load balance algorithm. LVS load balance technology is introduced briefly, the known load balancing algorithms and their merits and demerits are discussed in this paper; A Residual …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • G06F9/5088Techniques for rebalancing the load in a distributed system involving task migration
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Programme initiating; Programme switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1008Server selection in load balancing based on parameters of servers, e.g. available memory or workload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/101Server selection in load balancing based on network conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/16Reducing energy-consumption in distributed systems
    • Y02B60/167Resource sharing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/14Reducing energy-consumption by means of multiprocessor or multiprocessing based techniques, other than acting upon the power supply
    • Y02B60/142Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/12Congestion avoidance or recovery

Similar Documents

Publication Publication Date Title
Tong et al. A load balancing strategy based on the combination of static and dynamic
CN105656973B (en) Method for scheduling task and system in a kind of distributed node group
Wided et al. Load balancing with Job Migration Algorithm for improving performance on grid computing: Experimental Results
El Khoury et al. Energy-aware placement and scheduling of network traffic flows with deadlines on virtual network functions
Singh et al. Survey on various load balancing techniques in cloud computing
Yao et al. Cost-efficient tasks scheduling for smart grid communication network with edge computing system
Srivastava et al. A dominance of the channel capacity in load balancing of software defined network
Li et al. Dynamic load balancing algorithm based on FCFS
Mehta et al. Analysis of significant components for designing an effective dynamic load balancing algorithm in distributed systems
Lu et al. An efficient load balancing algorithm for heterogeneous grid systems considering desirability of grid sites
Chatterjee et al. A new clustered load balancing approach for distributed systems
Lu et al. A hybrid policy for job scheduling and load balancing in heterogeneous computational grids
Baikerikar et al. Comparison of load balancing algorithms in a grid
Nandagopal et al. Hierarchical status information exchange scheduling and load balancing for computational grid environments
Kanagaraj et al. Adaptive load balancing algorithm using service queue
Goyal et al. Adaptive and dynamic load balancing methodologies for distributed environment: a review
Yakubu et al. Priority based delay time scheduling for quality of service in cloud computing networks
Naaz et al. Load balancing algorithms for peer to peer and client server distributed environments
Asyabi et al. A new approach for dynamic virtual machine consolidation in cloud data centers
Mehta Designing an effective dynamic load balancing algorithm considering imperative design issues in distributed systems
Schwederski et al. A model of task migration in partitionable parallel processing systems
RU2406124C1 (en) Method for distributed processing of non-stationary stream of requests in heterogeneous computer system
Gao Simulation Design of Load Balancing Optimization for Cloud Computing Data Stream Storage Based on Big Data Algorithms
Geng et al. Dynamic load balancing scheduling model based on multi-core processor
Anitha et al. An efficient and scalable content based dynamic load balancing using multiparameters on load aware distributed multi-cluster servers