[go: up one dir, main page]

Sharafkandi et al., 2012 - Google Patents

Using EDCA to improve vehicle safety messaging

Sharafkandi et al., 2012

Document ID
9636511419057622481
Author
Sharafkandi S
Bansal G
Kenney J
Du D
Publication year
Publication venue
2012 IEEE Vehicular Networking Conference (VNC)

External Links

Snippet

The effectiveness of DSRC for collision avoidance depends on the communication performance of safety messages. EDCA, the standard IEEE 802.11 QoS capability, was designed for networks with a mix of voice, video and best effort traffic. This paper examines …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/24Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
    • H04L47/2458Modification of priorities while in transit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
    • H04W72/1205Schedule definition, set-up or creation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. van Duuren system; ARQ protocols
    • H04L1/1867Arrangements specific to the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/14Flow control or congestion control in wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0875Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/19Flow control or congestion control at layers above network layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/10Wireless resource allocation where an allocation plan is defined based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field

Similar Documents

Publication Publication Date Title
Wang et al. Opportunistic packet scheduling and media access control for wireless LANs and multi-hop ad hoc networks
Babu et al. Fairness analysis of IEEE 802.11 multirate wireless LANs
Pallot et al. Implementing message priority policies over an 802.11 based mobile ad hoc network
Di Felice et al. Enhancing the performance of safety applications in IEEE 802.11 p/WAVE Vehicular Networks
Lal et al. Distributed resource allocation for DS-CDMA-based multimedia ad hoc wireless LANs
CN102244683A (en) Method for improving service quality of mixed businesses in vehicular networking application
Xiao Backoff-based priority schemes for IEEE 802.11
Sharafkandi et al. Using EDCA to improve vehicle safety messaging
Gupta et al. Random-access scheduling with service differentiation in wireless networks
Almohammedi et al. Modeling and analysis of IEEE 1609.4 MAC in the presence of error-prone channels
Keceli et al. Weighted fair uplink/downlink access provisioning in IEEE 802.11 e WLANs
Kuo et al. A CSMA-based MAC protocol for WLANs with automatic synchronization capability to provide hard quality of service guarantees
Wang et al. Performance analysis of multichannel EDCA-based V2V communications via discrete event system
Sharafkandi et al. A novel use of EDCA to improve vehicle safety communication
Batsuuri et al. Model, analysis, and improvements for inter-vehicle communication using one-hop periodic broadcasting based on the 802.11 p protocol
Hasan et al. A novel multichannel cognitive radio network with throughput analysis at saturation load
Tandai et al. MAC efficiency enhancement with prioritized access opportunity exchange protocol for 60 GHz short-range one-to-one communications
MacKenzie et al. Throughput analysis of a p-persistent CSMA protocol with QoS differentiation for multiple traffic types
Ramos et al. ChaPLeT: Channel-dependent packet level tuning for service differentiation in IEEE 802.11 e
Wang et al. Contention Window Selection of IEEE 802.11 for Wireless Blockchain Network
Ahmed et al. Differentiation between different traffic categories using multi-level of priority in DCF-WLAN
Wang et al. A cognitive MAC protocol for QoS provisioning in ad hoc networks
Alsbou et al. Dynamic slot allocation algorithm for R-ALOHA with priority (PR-ALOHA)
Chen et al. Effect of Contention Window on the performance of IEEE 802.11 WLANs
Sulaimani et al. Wi-Fi and LTE-LAA coexistence problems, challenges and features in 5GHz unlicensed bandwidth