Hord, 2013 - Google Patents
The Illiac IV: the first supercomputerHord, 2013
- Document ID
- 9612263746431470531
- Author
- Hord R
- Publication year
External Links
Snippet
The Illiac IV was the first large scale array computer. As the fore runner of today's advanced computers, it brought whole classes of scientific computations into the realm of practicality. Conceived initially as a grand experiment in computer science, the revolutionary …
- 230000018109 developmental process 0 abstract description 35
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5022—Logic simulation, e.g. for logic circuit operation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5068—Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
- G06F17/5077—Routing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
- G06F15/163—Interprocessor communication
- G06F15/173—Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/80—Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
- G06F15/8007—Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors single instruction multiple data [SIMD] multiprocessors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/0721—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/78—Architectures of general purpose stored programme computers comprising a single central processing unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hord | The Illiac IV: the first supercomputer | |
Bouknight et al. | The illiac iv system | |
US3544973A (en) | Variable structure computer | |
US5963212A (en) | Parallel computing system for modeling and data processing | |
US4914612A (en) | Massively distributed simulation engine | |
US9069918B2 (en) | System and method implementing full-rate writes for simulation acceleration | |
Levendel et al. | Special‐Purpose Computer for Logic Simulation Using Distributed Processing | |
US20110032029A1 (en) | Configurable embedded processor | |
Bach et al. | Building the 4 processor SB-PRAM prototype | |
Bell et al. | Computer structures: What have we learned from the PDP-11? | |
Vedder et al. | The Hughes data flow multiprocessor: Architecture for efficient signal and data processing | |
Sohm et al. | Impact of load balancing on unstructured adaptive grid computations for distributed-memory multiprocessors | |
Kowalski | The VLSI design automation assistant: an IBM system/370 design | |
EP1192570A2 (en) | Logic event simulation | |
US20220229880A1 (en) | Compute time point processor array for solving partial differential equations | |
Civera et al. | The μ Project: An Experience with a Multimicroprocessor System. | |
Su | Hardware Description Language Applications: An Introdiction and Prognosis | |
Koike et al. | HAL: A high-speed logic simulation machine | |
Krishnamurthi et al. | Two approaches to the implementation of a distributed simulation system | |
Enslow Jr | Multiprocessors and Other Parallel Systems an Introduction and Overview | |
Yoshida et al. | A dedicated graphics processor sight-2 | |
Denneau et al. | Design and implementation of a software simulation engine | |
Fehr | An array-based hardware accelerator for digital logic simulation | |
Nevison | An undergraduate parallel processing laboratory | |
EP0450837A2 (en) | Logic simulation |