Suwandi et al., 2017 - Google Patents
Low-cost IMU and GPS fusion strategy for apron vehicle positioningSuwandi et al., 2017
- Document ID
- 9553302244630975726
- Author
- Suwandi B
- Kitasuka T
- Aritsugi M
- Publication year
- Publication venue
- TENCON 2017-2017 IEEE Region 10 Conference
External Links
Snippet
This paper presents a strategy to improve positioning estimation from low-cost Inertia Measurement Unit (IMU) sensor and Global Positioning System (GPS) for apron vehicle localization. IMU sensor provides raw acceleration values and its attitude, while GPS …
- 230000004927 fusion 0 title abstract description 24
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/10—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/26—Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/51—Relative positioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/26—Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements of navigation systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/53—Determining attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/005—Navigation; Navigational instruments not provided for in preceding groups with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/94—Radar or analogous systems specially adapted for specific applications for terrain-avoidance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
- G05D1/0295—Fleet control by at least one leading vehicle of the fleet
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suwandi et al. | Low-cost IMU and GPS fusion strategy for apron vehicle positioning | |
CN111307162B (en) | Multi-sensor fusion positioning method for automatic driving scene | |
Georgy et al. | Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation | |
Georgy et al. | Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter | |
Fakharian et al. | Adaptive Kalman filtering based navigation: An IMU/GPS integration approach | |
Bevly | Global positioning system (GPS): A low-cost velocity sensor for correcting inertial sensor errors on ground vehicles | |
JP5602070B2 (en) | POSITIONING DEVICE, POSITIONING METHOD OF POSITIONING DEVICE, AND POSITIONING PROGRAM | |
Liu et al. | Interacting multiple model UAV navigation algorithm based on a robust cubature Kalman filter | |
CN105928515A (en) | Navigation system for unmanned plane | |
Gao et al. | An integrated land vehicle navigation system based on context awareness | |
KR101764222B1 (en) | System and method for high precise positioning | |
CN115683092A (en) | DME/DME/SINS tightly-combined navigation system relocation method | |
Gustafsson et al. | Navigation and tracking of road-bound vehicles using map support | |
CN114994732B (en) | Vehicle-mounted course rapid initialization device and method based on GNSS carrier phase | |
CN114897942B (en) | Point cloud map generation method and device and related storage medium | |
Lopes et al. | Attitude determination of highly dynamic fixed-wing uavs with gps/mems-ahrs integration | |
Cahyadi et al. | Unscented Kalman filter for a low-cost GNSS/IMU-based mobile mapping application under demanding conditions | |
Jo et al. | Fast GPS-DR sensor fusion framework: Removing the geodetic coordinate conversion process | |
Erfianti et al. | GNSS/IMU sensor fusion performance comparison of a car localization in urban environment using extended Kalman filter | |
CN105007109A (en) | Adaptive combination navigation antenna beam control method for satellite communication in motion system | |
Song et al. | RFID/in-vehicle sensors-integrated vehicle positioning strategy utilising LSSVM and federated UKF in a tunnel | |
Hossein et al. | Multi-sensor data fusion for autonomous vehicle navigation through adaptive particle filter | |
Kauffman et al. | Simulation study of UWB-OFDM SAR for navigation with INS integration | |
Islam et al. | Implementation methodology of embedded land vehicle positioning using an integrated GPS and multi sensor system | |
CN110567456A (en) | BDS/INS Combined Train Location Method Based on Robust Kalman Filter |