Yin et al., 2017 - Google Patents
A two-input fluorescent logic gate for glutamate and zincYin et al., 2017
- Document ID
- 9505905458899189272
- Author
- Yin C
- Huo F
- Cooley N
- Spencer D
- Bartholomew K
- Barnes C
- Glass T
- Publication year
- Publication venue
- ACS Chemical Neuroscience
External Links
Snippet
The direct visualization of neurotransmitters is a continuing problem in neuroscience; however, functional fluorescent sensors for organic analytes are still rare. Herein, we describe a fluorescent sensor for glutamate and zinc ions. The sensor acts as a fluorescent …
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid   OC(=O)[C@@H](N)CCC(O)=O 0 title abstract description 81
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/536—Immunoassay; Biospecific binding assay with immune complex formed in liquid phase
- G01N33/542—Immunoassay; Biospecific binding assay with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/543—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/978—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | A two-input fluorescent logic gate for glutamate and zinc | |
Li et al. | Aptamer-based fluorescent sensor array for multiplexed detection of cyanotoxins on a smartphone | |
Long et al. | Determination of cyanide in water and food samples using an efficient naphthalene-based ratiometric fluorescent probe | |
Wang et al. | An optimized sensor array identifies all natural amino acids | |
Hatai et al. | Analyzing amyloid beta aggregates with a combinatorial fluorescent molecular sensor | |
Pu et al. | DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range | |
Ko et al. | In vivo monitoring of mercury ions using a rhodamine-based molecular probe | |
Zhang et al. | Using bioluminescence turn-on to detect cysteine in vitro and in vivo | |
Zhou et al. | Pattern recognition of proteins based on an array of functionalized porphyrins | |
Minami et al. | Supramolecular sensor for cancer-associated nitrosamines | |
Cao et al. | Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose | |
Choi et al. | Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish | |
Yu et al. | Bead-based competitive fluorescence immunoassay for sensitive and rapid diagnosis of cyanotoxin risk in drinking water | |
Feng et al. | Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline− europium− trioctyl phosphine oxide at the water/tetrachloromethane interface | |
Xue et al. | A general strategy for the semisynthesis of ratiometric fluorescent sensor proteins with increased dynamic range | |
Klockow et al. | ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis | |
Samanta et al. | Colorimetric and fluorometric discrimination of geometrical isomers (maleic acid vs fumaric acid) with real-time detection of maleic acid in solution and food additives | |
Oldham et al. | Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry | |
Zhou et al. | Detecting intramolecular conformational dynamics of single molecules in short distance range with subnanometer sensitivity | |
Louzao et al. | A fluorimetric microplate assay for detection and quantitation of toxins causing paralytic shellfish poisoning | |
Jiao et al. | 3D-printed, portable, fluorescent-sensing platform for smartphone-capable detection of organophosphorus residue using reaction-based aggregation induced emission luminogens | |
Klockow et al. | Development of a Fluorescent Chemosensor for the Detection of Kynurenine | |
Ding et al. | Design of a new hydrazine moiety-based near-infrared fluorescence probe for detection and imaging of endogenous formaldehyde in vivo | |
Brown et al. | Tale of two alkaloids: pH-controlled electrochemiluminescence for differentiation of structurally similar compounds | |
Bera et al. | Fluorogenic detection of monoamine neurotransmitters in live cells |