Satyamurthy et al., 1986 - Google Patents
No-carrier-added 3-(2′-[18F] fluoroethyl) spiperone, a new dopamine receptor-binding tracer for positron emission tomographySatyamurthy et al., 1986
- Document ID
- 9393729237254776557
- Author
- Satyamurthy N
- Bida G
- Barrio J
- Luxen A
- Mazziotta J
- Huang S
- Phelps M
- Publication year
- Publication venue
- International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology
External Links
Snippet
Abstract No-carrier-added (NCA) 3-(2′-[18 F] fluoroethyl) spiperone (5), a new dopamine receptor-binding radiopharmaceutical for positron emission tomography, was synthesized by two different methods. Alkylation of the amide nitrogen in spiperone by NCA [18 F] …
- DKGZKTPJOSAWFA-UHFFFAOYSA-N Spiperone   C1=CC(F)=CC=C1C(=O)CCCN1CCC2(C(NCN2C=2C=CC=CC=2)=O)CC1 0 title abstract description 44
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds
- A61K51/041—Heterocyclic compounds
- A61K51/044—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
- A61K51/0446—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds
- A61K51/041—Heterocyclic compounds
- A61K51/044—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
- A61K51/0455—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds
- A61K51/041—Heterocyclic compounds
- A61K51/044—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
- A61K51/0453—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds
- A61K51/0474—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
- A61K51/0476—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from monodendate ligands, e.g. sestamibi
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds
- A61K51/0493—Steroids, e.g. cholesterol, testosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds; Labelled organic compounds per se
- C07B59/001—Acyclic or carbocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds; Labelled organic compounds per se
- C07B59/002—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Satyamurthy et al. | No-carrier-added 3-(2′-[18F] fluoroethyl) spiperone, a new dopamine receptor-binding tracer for positron emission tomography | |
Kung et al. | Dopamine D-2 receptor imaging radiopharmaceuticals: Synthesis, radiolabeling and in vitro binding of (R)-(+)-and (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl] benzamide | |
Shiue et al. | No-carrier-added fluorine-18-labeled N-methylspiroperidol: synthesis and biodistribution in mice | |
Satyamurthy et al. | 3-(2′-[18F] fluoroethyl) spiperone, a potent dopamine antagonist: synthesis, structural analysis and in-vivo utilization in humans | |
JPS61225159A (en) | Complex of technetium 99m with propyleneamine oxime | |
EP1987017A1 (en) | Radioligands for the 5 -ht1b receptor | |
Lee Collier et al. | Synthesis of [18F]‐1‐(3‐Fluoropropyl)‐4‐(4‐cyanophenoxymethyl)‐piperidine: A potential sigma‐1 receptor radioligand for PET | |
Suehiro et al. | Radiosynthesis and evaluation of N-(3-[18F] fluoropropyl) paroxetine as a radiotracer for in vivo labeling of serotonin uptake sites by PET | |
Shiue et al. | Syntheses of no‐carrier‐added (NCA)[18F] fluoroalkyl halides and their application in the syntheses of [18F] fluoroalkyl derivatives of neurotransmitter receptor active compounds | |
Dae et al. | Halofluorination of olefins: elucidation of reaction characteristics and applications in labeling with the positron-emitting radionuclide fluorine-18 | |
Soloviev et al. | Asymmetric synthesis and preliminary evaluation of (R)-and (S)-[11C] bisoprolol, a putative β1-selective adrenoceptor radioligand | |
US5154913A (en) | Radioiodinated benzamines method of their use as radioimaging agents | |
Mukherjee et al. | 11C-Fallypride: radiosynthesis and preliminary evaluation of a novel dopamine D2/D3 receptor PET radiotracer in non-human primate brain | |
McPherson et al. | Synthesis and biodistribution of iodine-125-labeled 1-azabicyclo [2.2. 2] oct-3-yl. alpha.-hydroxy-. alpha.-(1-iodo-1-propen-3-yl)-. alpha.-phenylacetate. A new ligand for the potential imaging of muscarinic receptors by single photon emission computed tomography | |
Wilson et al. | [18F] Fluoroalkyl analogues of the potent 5-HT1A antagonist WAY 100635: radiosyntheses and in vivo evaluation | |
Shimadzu et al. | Novel probes for imaging amyloid‐β: F‐18 and C‐11 labeling of 2‐(4‐aminostyryl) benzoxazole derivatives | |
EP0317873B1 (en) | Radioiodinated benzamides and method of their use as radioimaging agents | |
De Groot et al. | Synthesis and evaluation of 1′-[18F] fluorometoprolol as a potential tracer for the visualization of β-adrenoceptors with PET | |
US5919797A (en) | Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites | |
Kiesewetter et al. | Preparation and biological evaluation of 18F-labeled benzamide analogs as potential dopamine D2 receptor ligands | |
WO2007137135A2 (en) | Rotenone analogs: method of preparation and use | |
Mukherjee | Fluorinated benzamide neuroleptics—2. Synthesis and radiosynthesis of (S)-N-[(1-ethyl-2-pyrrolidinyl) methyl]-5-(3-[18F] fluoropropyl)-3-substituted-2-methoxybenzamides | |
Mathis et al. | Synthesis and evaluation of high affinity, aryl-substituted [18F] fluoropropylbenzamides for dopamine D-2 receptor studies | |
Bergman et al. | Radiolabelling of 2-oxoquazepam with electrophilic 18F prepared from [18F] fluoride | |
Sano et al. | 1-(3′-[125I] iodophenyl)-3-methy-2-pyrazolin-5-one: preparation, solution stability, and biodistribution in normal mice |