Yang et al., 2011 - Google Patents
A novel methodology for multi-project system-on-a-chipYang et al., 2011
- Document ID
- 9354968714312000391
- Author
- Yang C
- Chang N
- Chen S
- Chien W
- Chen C
- Wu C
- Huang C
- Publication year
- Publication venue
- 2011 IEEE International SOC Conference
External Links
Snippet
In this paper, a novel silicon prototyping methodology is presented for Multi-Project System- on-a-Chip (MP-SoC) implementation. For integrating heterogeneous SoC projects into a single chip, the current SoC methodology is insufficient due to the complexity of MP-SoC. In …
- 238000000034 method 0 title abstract description 24
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5022—Logic simulation, e.g. for logic circuit operation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5068—Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
- G06F17/5081—Layout analysis, e.g. layout verification, design rule check
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/5054—Circuit design for user-programmable logic devices, e.g. field programmable gate arrays [FPGA]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318536—Scan chain arrangements, e.g. connections, test bus, analog signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5036—Computer-aided design using simulation for analog modelling, e.g. for circuits, spice programme, direct methods, relaxation methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318572—Input/Output interfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318583—Design for test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/70—Fault tolerant, i.e. transient fault suppression
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3177—Testing of logic operation, e.g. by logic analysers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/68—Processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/86—Hardware-Software co-design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/26—Functional testing
- G06F11/261—Functional testing by simulating additional hardware, e.g. fault simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/78—Architectures of general purpose stored programme computers comprising a single central processing unit
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rashinkar et al. | System-on-a-chip Verification: Methodology and Techniques | |
Bai et al. | Self-test methodology for at-speed test of crosstalk in chip interconnects | |
US7761828B2 (en) | Partitioning electronic circuit designs into simulation-ready blocks | |
US11333707B2 (en) | Testing of integrated circuits during at-speed mode of operation | |
Marwah | System-on-Chip Design and Test with Embedded Debug Capabilities | |
US7571414B2 (en) | Multi-project system-on-chip and its method | |
US20120060133A1 (en) | Annotation of RTL to Simplify Timing Analysis | |
US10664563B2 (en) | Concurrent testbench and software driven verification | |
US20210312113A1 (en) | Method for finding equivalent classes of hard defects in stacked mosfet arrays | |
Taraate | ASIC Design and Synthesis | |
Santos et al. | A scalable methodology for agile chip development with open-source hardware components | |
Krupnova | Mapping multi-million gate SoCs on FPGAs: industrial methodology and experience | |
Yang et al. | A novel methodology for multi-project system-on-a-chip | |
US9864830B1 (en) | Method and apparatus for placement and routing of circuit designs | |
Khan et al. | GHAZI: An open-source ASIC implementation of RISC-V based SoC | |
Huang et al. | Implementation and prototyping of a complex multi-project system-on-a-chip | |
US11113441B1 (en) | Reduce/broadcast computation-enabled switching elements in an emulation network | |
Neishaburi et al. | An infrastructure for debug using clusters of assertion-checkers | |
Yang et al. | A configurable prototyping platform for multi-project system-on-A-chip | |
Huang et al. | Programmable system-on-chip for silicon prototyping | |
Berthet | Going mobile: the next horizon for multi-million gate designs in the semi-conductor industry | |
Huang et al. | Multi-project system-on-chip (MP-SoC): A novel test vehicle for SoC silicon prototyping | |
Diamantopoulos et al. | Framework for performing rapid evaluation of 3D SoCs | |
Jiang et al. | Enhancing reliability and flexibility of a system-on-chip using reconfigurable logic | |
Huang et al. | Programmable system-on-chip (SoC) for silicon prototyping |