Lai, 2003 - Google Patents
Sonochemically Synthesized Magnetic Nanoparticles-Metallic Mixed OxideLai, 2003
- Document ID
- 930718261262674375
- Author
- Lai J
- Publication year
External Links
Snippet
Nanotechnology is one of the current major research fields. Due to the enormous applications, magnetic nanoparticles have become one of the most interesting areas of research. High intensity ultrasound can generate cavities with unique condition in liquid …
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Metals or alloys
- H01F1/06—Metals or alloys in the form of particles, e.g. powder
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0072—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
- H01F1/0081—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/24—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Julian Fernandez et al. | Progress and prospects of hard hexaferrites for permanent magnet applications | |
Hajalilou et al. | A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties | |
Leslie-Pelecky et al. | Magnetic properties of nanostructured materials | |
Dippong et al. | Effect of nickel content on structural, morphological and magnetic properties of NixCo1-xFe2O4/SiO2 nanocomposites | |
Mathew et al. | An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions | |
Hernando | Magnetic properties and spin disorder in nanocrystalline materials | |
Chinnasamy et al. | Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe 2 O 4 nanoparticles | |
Zan et al. | Magnetic and Impedance Properties of Nanocomposite CoFe 2 O 4/Co 0.7 Fe 0.3 and Single‐Phase CoFe 2 O 4 Prepared Via a One‐Step Hydrothermal Synthesis | |
Shafi et al. | Sonochemical approach to the preparation of barium hexaferrite nanoparticles | |
Pan et al. | Effects of different sintering temperature on structural and magnetic properties of Ni–Cu–Co ferrite nanoparticles | |
Zhao et al. | Magnetism and Magnetic Materials | |
Maneesha et al. | Nanomagnetic materials: Structural and magnetic properties | |
Breitwieser et al. | Ferrite nanostructures consolidated by spark plasma sintering (SPS) | |
Kumar et al. | Nanocrystalline Co0. 5Zn0. 5Fe2O4 ferrite: Synthesis, characterization and study of their magnetic behavior at different temperatures | |
Shukla et al. | Magnetic nanostructures: Synthesis, properties, and applications | |
Hajalilou et al. | Magnetic Nanoparticles: Synthesis, Characterization, and Applications | |
Lai | Sonochemically Synthesized Magnetic Nanoparticles-Metallic Mixed Oxide | |
Akhtar et al. | Microstructural and magnetic properties of transition and rare-earth metals-substituted cobalt nanoferrites | |
Poudyal | Synthesis and characterization of magnetic nanoparticles | |
Pokharel | magnetic anisotropy and magnetostriction in functional ferromagnets | |
Magnetic Hardening in the Transition Metal Nanoparticles and Nanowires | ||
Freire et al. | Bimagnetic core/shell nanoparticles: current status and future possibilities | |
Chikazumi | Evolution of research in magnetism in Japan | |
Wang | Phase decomposition and magnetic properties of spinel ferrites synthesized via high-energy ball mill | |
Lucis | Microstructure and phase analysis in Mn-Al and Zr-Co permanent magnets |