Thompson et al., 2017 - Google Patents
Antennas and arraysThompson et al., 2017
View HTML- Document ID
- 9185097127324211175
- Author
- Thompson A
- Moran J
- Swenson Jr G
- Publication year
- Publication venue
- Interferometry and synthesis in radio astronomy
External Links
Snippet
This chapter opens with a brief review of some basic considerations of antennas. The main part of the chapter is concerned with the configurations of antennas in interferometers and synthesis arrays. It is convenient to classify array designs as follows: Arrays with nontracking …
- 230000035945 sensitivity 0 abstract description 45
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/16—Curved in two dimensions, e.g. paraboloidal
- H01Q15/161—Collapsible reflectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
- H01Q19/10—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/13—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
- H01Q19/132—Horn reflector antennas; Off-set feeding
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised active aerial units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0018—Space- fed arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/12—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system using mechanical relative movement between primary active elements and secondary devices of aerials or aerial systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/12—Refracting or diffracting devices, e.g. lens, prism functioning also as polarisation filter
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/44—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
- H01Q3/446—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/288—Satellite antennas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
- G01S13/9035—Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thornton et al. | Modern lens antennas for communications engineering | |
Christiansen et al. | Radiotelescopes | |
Iupikov et al. | Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing | |
Bará et al. | Angular resolution of two-dimensional, hexagonally sampled interferometric radiometers | |
Fisher et al. | Full-sampling array feeds for radio telescopes | |
Rusch | The current state of the reflector antenna are-entering the 1990s | |
Patra et al. | The expanded Giant Metrewave Radio Telescope | |
Thompson et al. | Antennas and arrays | |
Fisher | Phased array feeds for low noise reflector antennas | |
Kiehbadroudinezhad et al. | Expansion of a Y-shaped antenna array and optimization of the future antenna array in Malaysia for astronomical applications | |
Ellingson | Antennas in radio telescope systems | |
Rogers et al. | Corrections for the effects of a radome on antenna surface measurements made by microwave holography | |
Swenson Jr | Synthetic-aperture radio telescopes | |
Cha et al. | Microwave delay characteristics of Cassegrainian antennas | |
Hay et al. | Applications of phased array feeders in reflector antennas | |
EkersCSIRO Fellow et al. | Radio telescopes | |
Veidt et al. | Bandwidth limits of beamforming networks for low-noise focal-plane arrays | |
Meeks | Astrophysics: Radio Telescopes | |
Hayman | Beamforming and evaluation of focal plane arrays for radio astronomy | |
Salter | Single-dish radio telescopes | |
Joardar et al. | Radio Astronomy: An Introduction | |
Laganà et al. | On the design and optimization of the array elements in the GEO atmospheric sounder instrument: A new design procedure | |
Peichl | Radiometer Antennas | |
Prince | Millimeter-Wave Lens and Reflector Antennas for Broadband Applications | |
Dong et al. | Antenna array design in aperture synthesis radiometers |