[go: up one dir, main page]

Wang et al., 2016 - Google Patents

Botnet detection based on anomaly and community detection

Wang et al., 2016

View PDF
Document ID
9123787603034338273
Author
Wang J
Paschalidis I
Publication year
Publication venue
IEEE Transactions on Control of Network Systems

External Links

Snippet

We introduce a novel two-stage approach for the important cybersecurity problem of detecting the presence of a botnet and identifying the compromised nodes (the bots), ideally before the botnet becomes active. The first stage detects anomalies by leveraging large …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/26Monitoring arrangements; Testing arrangements
    • H04L12/2602Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/02Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data
    • H04L43/026Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data using flow generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/50Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
    • H04L41/5003Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/12Arrangements for monitoring or testing packet switching networks using dedicated network monitoring probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/10Arrangements for monitoring or testing packet switching networks using active monitoring, e.g. heartbeat protocols, polling, ping, trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/06Report generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/24Presence management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/06Arrangements for maintenance or administration or management of packet switching networks involving management of faults or events or alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks

Similar Documents

Publication Publication Date Title
Wang et al. Botnet detection based on anomaly and community detection
Li et al. System statistics learning-based IoT security: Feasibility and suitability
US9860257B1 (en) Anomaly detection and threat prediction through combined power and network analytics
Salahuddin et al. Time-based anomaly detection using autoencoder
Aiello et al. DNS tunneling detection through statistical fingerprints of protocol messages and machine learning
Paschalidis et al. Spatio-temporal network anomaly detection by assessing deviations of empirical measures
US10061922B2 (en) System and method for malware detection
Qassim et al. Anomalies Classification Approach for Network-based Intrusion Detection System.
US20140165198A1 (en) System and method for malware detection using multidimensional feature clustering
Stevanovic et al. Machine learning for identifying botnet network traffic
JP2008306706A (en) Method and apparatus for detecting abnormality in signaling flow
CN114788228A (en) Detect brute force attacks
US9596321B2 (en) Server grouping system
Umer et al. A two-stage flow-based intrusion detection model for next-generation networks
Wang et al. Network anomaly detection: A survey and comparative analysis of stochastic and deterministic methods
Callegari et al. A methodological overview on anomaly detection
Tariq et al. Machine learning based botnet detection in software defined networks
Wang et al. Botnet detection using social graph analysis
Xiao et al. Discovery method for distributed denial-of-service attack behavior in SDNs using a feature-pattern graph model
Qin et al. Symmetry degree measurement and its applications to anomaly detection
Bernieri et al. Kingfisher: An industrial security framework based on variational autoencoders
Bencheikh Lehocine et al. Preprocessing-based approach for prompt intrusion detection in SDN networks
Wang et al. A lightweight SDN fingerprint attack defense mechanism based on probabilistic scrambling and controller dynamic scheduling strategies
Mendonça et al. An extremely lightweight approach for ddos detection at home gateways
Bhatiaa et al. A survey on analyzing encrypted network traffic of mobile devices